

The Personal Software Process
SM

 (PSP
SM

)

Body of Knowledge, Version 2.0

Marsha Pomeroy-Huff

Robert Cannon

Timothy A. Chick

Julia Mullaney

William Nichols

August 2009

SPECIAL REPORT

CMU/SEI-2009-SR-018

Software Engineering Process Management Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2009 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at per-

mission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu

i | CMU/SEI-2009-SR-018

Table of Contents

About This Report v

Acknowledgments vii

Foreword ix

Abstract xi

1 Introduction 1
1.1 Purpose 2

2 Suggested Uses of the PSP BOK 5
2.1 Use by Software Development Professionals 5
2.2 Use by the Software Development Industry 5
2.3 Use by TSP Practitioners 5
2.4 Use by Academic Institutions 5

3 PSP BOK Structure and Terminology 7
3.1 Structure 7
3.2 Operational Definition of Terms 7

4 The PSP Body of Knowledge 9

Competency Area 1: Foundational Knowledge 11

Competency Area 2: Basic PSP Concepts 19

Competency Area 3: Size Measuring and Estimating 29

Competency Area 4: Making and Tracking Project Plans 39

Competency Area 5: Planning and Tracking Software Quality 47

Competency Area 6: Software Design 55

Competency Area 7: Process Extensions and Customization 63

Conclusion 67

Appendix Key Statistical Formulae and Procedures 69

Bibliography 75

ii | CMU/SEI-2009-SR-018

iii | CMU/SEI-2009-SR-018

List of Figures

Figure 1: Architectural Hierarchy of the PSP BOK Components 7

iv | CMU/SEI-2009-SR-018

v | CMU/SEI-2009-SR-018

About This Report

The intent of the Personal Software Process
SM

 (PSP
SM

) body of knowledge (BOK) contained in

this report is to provide guidance to software professionals who are interested in using proven-

effective, disciplined methods to improve their personal software development process. However,

it is also of interest to individuals who do not develop software but work with or manage projects

involving many other kinds of development. The PSP BOK can aid these individuals in determin-

ing the knowledge and skills that most professionals should possess when working in a self-

directed teaming environment such the Team Software Process
SM

 (TSP
SM

). Development profes-

sionals who will find the PSP BOK to be useful include but are not limited to

 senior executives of software development organizations or of companies who use software

as a component in their products

 program and project managers

 members of integrated product-development teams

 professionals who give support to software and other development projects (for example,

systems engineers, testers, quality assurance specialists, and technical writers)

 customers and stakeholders

 process improvement consultants

The PSP BOK can also be used by education professionals in creating or assessing instructional

products, from individual courses to entire curricula. For example, it can be used by professors or

course designers to ensure that the content of new courses enables students to master the know-

ledge and skills of each competency area or to examine existing courses and evaluate them on

their coverage of the requisite competencies.

Similarly, this document can be used to create, assess, or accredit certifications or other creden-

tials programs for PSP practitioners. Certification programs provide individuals with documenta-

tion attesting that those individuals have attained a well-defined and objectively-measured level of

proficiency in a particular field or discipline, as defined by a core set of knowledge and skills.

Individuals who successfully demonstrate their proficiency—usually measured by performance on

a standardized assessment instrument, and recognized by awarding of a credential or certifica-

tion—are regarded as competent, skilled professionals with a demonstrated level of mastery in the

competencies delineated by their profession’s body of knowledge.

SM

 Personal Software Process and PSP are service marks of Carnegie Mellon University.

vi | CMU/SEI-2009-SR-018

vii | CMU/SEI-2009-SR-018

Acknowledgments

In preparing this report, the authors consulted with several individuals who provided ideas and

contributions to the content of the PSP BOK. In particular, we want to acknowledge our version

1.0 co-authors, Mark Seburn, Julia Mullaney, and Robert Cannon, who provided review com-

ments for this version. Thanks to Jefferson Welch and Alan Willett for helping us out when we

got stuck for inspiration, words, and/or time (sometimes all at the same moment). Our editors in

SEI Technical Communications were instrumental in catching the typos, grammar errors, and oth-

er defects that eluded us, and we appreciate their willingness to do the other tedious chores (such

as document formatting) that are necessary to make the document visually appealing. Other indi-

viduals also contributed to reviewing the content and clarity of the report, and we would like to

thank these individuals for their time and assistance: Yoshi Akiyama, Kimberly Campbell, David

Carrington, Noopur Davis, Clare Dixon, Caroline Graettinger, Tom Hilburn, Watts Humphrey,

Susan Kushner, Jim Over, Hans-Peter Pfister, Mary Ellen Rich, Jim Van Buren, and Alan Willett.

Finally, the authors would like to honor the ancient tradition of ―saving the best for last‖ by end-

ing this section in acknowledging the enormous contributions of Watts Humphrey, not only to this

team and to this effort, but to the entire field of software engineering. It is fitting that as Version

1.0 of this document was being completed in 2005, Watts received word that he had been awarded

the National Medal of Technology, which is given to America’s leading innovators by the Presi-

dent of the United States. This award is appropriate recognition for a lifetime of effort aimed at

improving the software development process. The Capability Maturity Model (CMM) has

helped many companies to achieve consistent excellence at the organizational level, and the cul-

mination of Watts’s life work—the PSP and TSP methodologies—have given that same capability

to individuals and teams. Those of us who use these methods thank Watts for these innovations,

which have improved not only the quality of our work and our schedule- and effort-estimating

abilities, but also the quality of our work life in general.

 Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

viii | CMU/SEI-2009-SR-018

ix | CMU/SEI-2009-SR-018

Foreword

What do we want from software engineering? That, of course, depends on who is asking. Just

about everyone wants quality software on predictable schedules and for committed costs. Those

of us in the development business also want a fun job, a rewarding development experience, and

the satisfaction of doing professional work. Managers and users want development professionals

who are credible and professional and can be trusted to do what they commit to do. Educators are

most concerned with preparing student developers to do the kinds of work that society needs.

While the software business has been troubled almost from the outset, with unpredictable sche-

dules, missed commitments, and poor-quality products, it has also produced some remarkable

innovations. Software has supported and enabled many, if not most, of the modern advances in

science and technology. Software is a truly extraordinary technology. It controls, guides, or

enables just about every product, tool, or support system in our modern world. Just about every-

thing that people now do depends to some degree on the effective performance of software.

Software is central to our lives, to our businesses, and, in a growing number of cases, to our very

survival. It is therefore critically important that software professionals learn and consistently use

the best possible methods when they do their jobs.

This body of knowledge encapsulates the basic knowledge and principles behind the PSP. While

the PSP is almost certainly not the last word in software development practice, it was developed

from the basic principles of science and engineering, and when developers truly follow these prin-

ciples in their work, they produce quality products on predictable schedules and for their commit-

ted costs. This may sound too good to be true, but it is not really the PSP that does it. The PSP is

so effective because software professionals are such extraordinarily capable people. Since the

PSP is a set of practices and methods that enable software developers to control their own work-

ing lives, when competent professionals learn and consistently follow these engineering and

scientific principles, and when they are empowered to manage their own work, they do an unbe-

lievably good job.

This BOK describes the basic PSP practices and methods. From this foundation, it is our hope

that the software community will develop the courses, the support tools and methods, the certifi-

cation and qualification programs, and all of the other required elements to enable the widespread

adoption of these methods.

Watts S. Humphrey

June 2009

x | CMU/SEI-2009-SR-018

xi | CMU/SEI-2009-SR-018

Abstract

As the profession of software engineering evolves and matures, it must achieve some of the criti-

cal elements needed for recognition as a bona fide discipline. Among these elements are the es-

tablishment of a recognized body of knowledge (BOK) and certification of professional practi-

tioners.

The body of knowledge contained in this report is designed to complement the IEEE Computer

Society’s Software Engineering Body of Knowledge (SWEBOK) by delineating the skills and con-

cepts that compose the knowledge areas and competencies of a proven-effective process im-

provement method, the Personal Software Process (PSP). As adoption of the PSP methodology

continues to grow, it becomes crucial to document the fundamental knowledge and skills that set

PSP practitioners apart from other software professionals. The PSP BOK serves this purpose and

more. It helps individual practitioners to assess and improve their own skills; provides employers

with an objective baseline for assessing the personal process skills and capabilities of their prod-

uct development team members; and guides academic institutions that want to incorporate PSP

into their software and other engineering courses or curricula. The PSP BOK also facilitates the

development of PSP certification programs that are based on a well-established, standard set of

knowledge and skills.

xii | CMU/SEI-2009-SR-018

1 | CMU/SEI-2009-SR-018

1 Introduction

Software engineering is one of the largest and most influential industries in modern society. It has

evolved from early calculation applications used only by government agencies and university

think tanks to complex applications that permeate every aspect of modern life. The banking, tele-

communications, travel, medical, entertainment, and even agriculture industries rely heavily on

software to operate. Software affects even the most mundane aspects of our lives, from buying

groceries to doing a load of laundry or filling our cars’ fuel tanks with gas.

Yet, in spite of its pervasive influence, software engineering is a relatively young discipline. The

term ―software engineering‖ has been in popular use only since the late 1960s, following its intro-

duction in the title of a NATO Science Committee conference at Garmisch, Germany [Naur 69].

One frequent criticism of the software profession is the poor quality of the products it produces.

This problem has been attributed to many causes, from the way software professionals are edu-

cated to the overall problems inherent within a young profession. An article in the online encyc-

lopedia Wikipedia summed up the criticism of software development as follows:

“In traditional engineering, there is a clear consensus how things should be built, which

standards should be followed, and which risks must be taken care of; if an engineer does not

follow these practices and something fails, he gets sued. There is no such consensus in soft-

ware engineering: Everyone promotes their own methods, claiming huge benefits in produc-

tivity, usually not backed up by any scientific, unbiased evidence” [Wikipedia 05].

A powerful counter to this criticism is the widespread adoption of the Personal Software Process

(PSP) methodology. Developed in 1993 by Watts S. Humphrey, the PSP is a disciplined and

structured approach to developing software. By using the PSP concepts and methods in their

work, individuals in almost any technical field can improve their estimating and planning skills,

make commitments that they can meet, manage the quality of their work, and reduce the number

of defects in their products.

The effectiveness of the PSP methodology (and its companion technology, the Team Software

Process
SM

 or TSP
SM

) in both academic and industrial settings is documented in numerous technic-

al reports and peer-reviewed journal articles. Since PSP relies heavily on the collection and analy-

sis of personal data as proof of effective process implementation, the claims made in these reports

and articles are supported by objective, hard-data evidence.

The concepts and methodologies of the PSP and TSP technologies have reached a level of maturi-

ty sufficient to warrant that further refinements be made by the professional community, acade-

mia, and certification entities. To support this effort, further educational expansion of the PSP

must be accomplished by and accepted in the community. The research performed by Ford and

Gibbs revealed that as a profession advances, it must have ways to assess and assure the adequacy

SM

 Team Software Process and TSP are service marks of Carnegie Mellon University.

2 | CMU/SEI-2009-SR-018

of education and training curricula and the competency of individual professionals to further the

profession [Ford 96]. Professional PSP competency measures are needed to assess both the level

of knowledge acquisition and the level of skill in applying that knowledge. Certification is one of

the most widely used mechanisms that a profession employs to make explicit the core set of

knowledge and skills that a professional is expected to master, to establish objective assessments

of those core competencies, and to provide a foundation for continuing qualification of individual

professionals.

At the core of the process of maturing a profession is the establishment of a body of knowledge

(BOK). A body of knowledge is a document generated by experts or masters in a particular pro-

fession to identify and delineate the concepts, facts, and skills that professionals and practitioners

in that profession are expected to have mastered. The Institute of Electrical and Electronics Engi-

neers (IEEE) Computer Society has established a body of knowledge for the software engineering

profession as a whole. The PSP BOK document is meant to complement and build upon that work

by describing the essential skills and knowledge specific to the PSP approach to software process

improvement.

It is the authors’ expectation that as PSP practice becomes more widespread, there will be further

evolutions to the body of knowledge, particularly in the area of process extensions. The authors

invite knowledgeable users of the PSP to submit suggestions and input for future revisions to this

body of knowledge.

1.1 Purpose

The PSP BOK is not intended to be a comprehensive overview of the entire field of software en-

gineering, nor is it meant to exhaustively delineate every supporting detail of the various key con-

cepts and skills that compose the PSP competency areas. Rather, the purpose of this document is

to provide an overview of the competencies, knowledge areas, and key concepts and skills that

constitute the core PSP body of knowledge. The main purposes of this document are to

 define the essential knowledge and skills that PSP-trained software professionals are ex-

pected to master

 characterize the standard practices of PSP-trained software professionals

 delineate the knowledge and skills that set PSP practitioners apart from common software

(and other) engineering practices

 establish a baseline for developing, assessing, and accrediting PSP courses and curricula

throughout academia

 facilitate the establishment of PSP certification programs that are based on an established

and agreed-upon standard knowledge and skills set

 provide employers with a baseline for assessing the skills and capabilities of their product

development team members

 characterize the disciplined practices used by self-directed TSP team members

3 | CMU/SEI-2009-SR-018

Another purpose of this document is to define and delineate the baseline knowledge and skill set

upon which the Carnegie Mellon Software Engineering Institute (SEI) certification program for

the SEI-Certified PSP Developer is based.

Although the principles and skills of the PSP can and should be applied to every phase of the

product life cycle, the primary concentration is on improving the outputs of the development

phase of software projects. Therefore, there are categories of software and other engineering

knowledge that are not represented in the PSP BOK (architecture, requirements definition, hard-

ware design, etc.), although it is assumed that a proficient software professional will have some

degree of familiarity with such topics. It is also assumed that individuals who have mastered the

PSP possess certain knowledge and skills, such as the ability to write software in one or more rec-

ognized programming languages, and proficiency in basic mathematics and applying statistical

methods. Since these knowledge and skill areas are prerequisites for using the PSP, an exhaustive

description of these areas is not included in this body of knowledge.

Similarly, although the PSP BOK is meant to guide the design, development, implementation, and

assessment of courses and curricula based in part or in whole on the knowledge and skills deli-

neated in it, the PSP BOK is not intended to be a guide for curriculum or course development.

Such activities require pedagogical knowledge and expertise outside the domain of this body of

knowledge; therefore, this document is meant to guide only the content—not the methodology—

of PSP instruction and training.

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

4 | CMU/SEI-2009-SR-018

5 | CMU/SEI-2009-SR-018

2 Suggested Uses of the PSP BOK

The PSP BOK can be used in professional, industrial, and academic settings. For example, it can

be used as a basis for certifying practitioners who have attained proficiency in all of the key con-

cepts and skills that the body of knowledge comprises. This section discusses potential uses of the

PSP BOK in detail.

2.1 Use by Software Development Professionals

The definitions of essential concepts and skills that compose the PSP BOK can assist software

professionals in assessing their own skills and proficiencies, and in identifying areas in which they

may need further improvement.

2.2 Use by the Software Development Industry

The PSP BOK can be used by employers who want to establish an objective baseline for assessing

the skills and capabilities of their product development team members. By understanding soft-

ware best practices, the industry can implement improvement efforts within its organizations, the-

reby achieving higher quality products and better management of costs and schedules.

2.3 Use by TSP Practitioners

The PSP is the training tool that enables TSP to be used by development teams. TSP provides an

operational framework in which PSP-trained individuals combine their personal process discipline

skills with proven process management techniques to plan, develop, and deliver high-quality

software products within the given schedule and cost parameters. However, not all members of

development teams are software developers; teams can and do include members who are docu-

ment writers, testers, quality assurance specialists, and so on. The PSP BOK provides a handy

one-stop reference for PSP-trained developers and can provide non-PSP-trained team members

with a valuable overview of the concepts and practices used by the developers, thereby establish-

ing a common foundation and shared vocabulary for all members of a development team.

2.4 Use by Academic Institutions

The PSP BOK can assist academic institutions in updating software engineering or computer

science curricula to reflect current software development practices used in industry. As employ-

ers begin to require that newly hired developers possess the SEI-Certified PSP Developer creden-

tial, academic institutions can begin to prepare students for the certification examination. Some

institutions may choose to offer a PSP course, while others may choose to integrate PSP into sev-

eral of their courses. In both cases, institutions can use the guidance provided by this BOK to

ensure that the topics included on the certification examination are adequately presented.

Academic institutions are expected to be innovative in developing ways to prepare students to

master the PSP BOK. Whether via traditional classroom courses, distance education, or other

media, the instruction that academic institutions offer will provide a benchmark for industrial or

commercial training programs based on the PSP BOK. Academic instruction in the BOK compe-

6 | CMU/SEI-2009-SR-018

tencies, knowledge areas, key concepts, and key skill areas also provides a baseline for assessing

the quality of instruction offered through industrial or commercial training or other such venues.

7 | CMU/SEI-2009-SR-018

3 PSP BOK Structure and Terminology

3.1 Structure

The body of knowledge delineated in this document is organized in an architectural hierarchy in

which the concepts and skills of the PSP are described and decomposed into three levels of ab-

straction. For the purpose of this model, the term concept is used to describe the intellectual as-

pects of the PSP content; that is, the information, facts, terminology, and philosophical compo-

nents of the technology. The term skill refers to the ability of an individual to interpret and apply

concepts to the performance of a task; in this document, if individuals understand a concept, it is

assumed that they also have the ability to perform the skills related to or founded upon the con-

cept. Together, the key concepts and skills form a knowledge area, and related knowledge areas

constitute a competency area.

Figure 1: Architectural Hierarchy of the PSP BOK Components

3.2 Operational Definition of Terms

The PSP BOK uses the following terms to describe the categories of principles and processes it

contains.

 competency area: a group of closely-related knowledge areas that a practitioner is well qual-

ified to perform intellectually or physically

 knowledge area: the sum or range of specific understanding and ability gained through study

of a set of concepts or through experience with a set of skills

 concept: an explanatory principle applicable to a specific instance or occurrence within a

particular knowledge area

 skill: proficiency, facility, or dexterity that is acquired or developed through training or ex-

perience within a particular knowledge area

 Key Concepts and Skills

Competency Areas

Competency Area

 Knowledge Areas

8 | CMU/SEI-2009-SR-018

9 | CMU/SEI-2009-SR-018

4 The PSP Body of Knowledge

This section contains a description of each major competency area, its supporting knowledge

areas, and the key concepts and skills that compose each knowledge area. This information does

not provide a detailed delineation of the PSP process but rather a high-level description of the pro-

ficiencies that a competent PSP-trained individual is expected to master. As the PSP is adopted

by broader audiences throughout the world, it is expected that the content of this BOK will evolve

over time with an increased range of practice in a variety of environments and cultures.

The PSP BOK is composed of seven competency areas.

 Competency Area 1: Foundational Knowledge

 Competency Area 2: Basic PSP Concepts

 Competency Area 3: Size Measuring and Estimating

 Competency Area 4: Making and Tracking Project Plans

 Competency Area 5: Planning and Tracking Software Quality

 Competency Area 6: Software Design

 Competency Area 7: Process Extensions and Customizations

The first two competency areas provide an overview of the foundation on which the PSP methods

are built and an explanation of basic PSP concepts. Competency Areas 3, 4, 5, and 6 discuss

more specific components such as planning, making and tracking schedules, measuring and im-

proving product quality, and various techniques for designing software. The final competency

area discusses advanced applications of the PSP by experienced practitioners.

10 | CMU/SEI-2009-SR-018

11 | CMU/SEI-2009-SR-018

Competency Area 1: Foundational Knowledge

The Foundational Knowledge competency area outlines the basic process definition and the

knowledge and skills in statistical methods which constitute the conceptual foundation on which

the PSP is built. The major knowledge areas composing the Foundational Knowledge competen-

cy area are as follows:

1.1 Process Definition – This knowledge area outlines the fundamental concepts and skills

that enable engineering professionals to create, use, and stabilize the defined processes of which

PSP is comprised.

1.2 Process Elements – This knowledge area delineates the components that are included in

any personal process and form a framework for organizing project work.

1.3 Measurement Principles – This knowledge area describes process and product measure-

ment and explains why measures are essential for producing high-quality work.

1.4 Statistical Elements – This knowledge area discusses the statistics which provide a foun-

dation for planning and tracking methodologies used in the PSP, and that also provide an objec-

tive means of analyzing and improving personal processes.

References: The subject matter covered in this competency is detailed in the following works:

[Humphrey 95, Chapters 1, 7, 11, 13, Appendix C]

[Humphrey 05a, Chapters 1, 2, 6, 8, 13]

Knowledge Area 1.1: Process Definition

The PSP is a series of defined processes that allow engineering professionals (such as software

developers) to produce high-quality products on time and within budget. This knowledge area

outlines the concepts and skills needed to create, stabilize, and use defined processes.

1.1.1 Process

A process describes the sequence of steps that a knowledgeable professional should follow to do a

specified task.

1.1.2 Defined process

A defined process is a documented sequence of steps required to do a specific job. Processes are

usually defined for jobs that are done repeatedly and need to be done in the same way each time

that they are performed.

12 | CMU/SEI-2009-SR-018

1.1.3 Benefits of defining a process

A defined process provides

 a clearly delineated framework for planning, tracking, and managing work

 a guide for doing the work correctly and completely, with the steps in the proper order

 an objective basis for measuring the work and tracking progress against goals, and for refin-

ing the process in future iterations

 a tool for planning and managing the quality of products produced

 agreed-upon, mutually-understood procedures for team members to use in coordinating their

work to produce a common product

 a mechanism that enables team members to support each other throughout the course of the

project

1.1.4 Process documentation

Process documentation is the act of producing a succinct written representation of a process, its

entry and exit criteria, the process phases, and the process steps for each phase. The process do-

cumentation should not contain tutorial or other explanatory material typically needed by un-

skilled or uninformed individuals; it should provide only the necessary information that expe-

rienced practitioners require to enact the process steps.

1.1.5 Processes and plans

Whereas processes are defined sets of steps for doing a task or project, plans include both the

process steps and other elements required for a specific instantiation of that process, such as

resources needed, roles of various project members, schedules, budget, goals and objectives,

commitments, and identified risks.

1.1.6 Personal processes

A personal process is a defined set of steps or activities that guide individuals in doing their per-

sonal work. It is usually based on personal experience and may be developed entirely ―from

scratch‖ or may be based on another established process and modified according to personal expe-

rience. A personal process provides individuals with a framework for improving their work and

for consistently doing high-quality work.

1.1.7 Enactable and operational processes

An enactable process defines precisely how to do a process, and includes all of the elements re-

quired for using the process. An enactable process consists of a process definition, required

process inputs, and assigned agents, resources (e.g., people, hardware, time, money), and exit cri-

teria. An operational process defines precisely what to do by listing the required tasks in enough

detail to guide a knowledgeable professional through doing that task. Operational processes pro-

vide sufficiently detailed guidance so that teams and individuals can make detailed plans for

doing a project and then use the process to guide and track their work. The PSP is an example of

an enactable operational process.

13 | CMU/SEI-2009-SR-018

1.1.8 Process phases

A defined process consists of a set of steps, elements, or activities that are generally called phases.

Simple process phases consist of steps with no further substructure. More complex processes may

have phases that are themselves processes. The steps or activities in each phase are defined by a

script (see 1.2.2). At a minimum, any process must have three phases: planning, development,

and postmortem.

1.1.9 The PSP process phases

The basic PSP process has three phases.

1. Planning: Produce a plan to do the work.

2. Development: Perform the work.

a. define the requirements (see 4.2.2)

b. design the program

c. review the design and fix all defects

d. code the program

e. review the code and fix all defects

f. build or compile and fix all defects

g. test the program and fix all defects

3. Postmortem: Compare actual performance against the plan, record process data, produce a

summary report, and document all ideas for process improvement.

1.1.10 Incremental development

The PSP facilitates incremental development. For larger projects, each increment can be an entire

PSP project, a PSP development phase, or part of a PSP development phase, depending on the

individual’s needs.

 Various predefined PSP incremental development processes are available [Humphrey 05a].

 The PSP methods are used most effectively with large-scale incremental development when

each increment is of high quality.

1.1.11 Process tailoring

Process tailoring is the act of customizing a process definition to support the enactment of that

process for a particular purpose (see 7.1).

1.1.12 Process building and refining

Skilled PSP practitioners can use or tailor the PSP scripts to define or customize their own high-

quality personal processes for building a product. Professionals should define their own processes

to ensure that the processes fit their needs as closely as possible [Humphrey 95, p. 16]. As the

process is enacted on various projects, the users of the process should strive for continuous re-

14 | CMU/SEI-2009-SR-018

finement and improvement in both the process itself and in the quality of the products produced

using that process.

Knowledge Area 1.2: Process Elements

This knowledge area describes the components that are included in any personal process and form

a framework for organizing project work.

1.2.1 Process elements

Process elements are components of a process. The PSP contains four basic elements: scripts,

forms, measures, and standards.

1.2.2 Scripts

Scripts are expert-level descriptions that guide personal enactment of a process. They contain

references to pertinent forms, standards, checklists, sub-scripts, and measures. Scripts may be

defined at a high level for an entire process or at a more detailed level for a particular process

phase. A process script documents

 the process purpose or objective

 entry criteria

 any general guidelines, usage considerations, or constraints

 phases or steps to be performed

 process measures and quality criteria

 exit conditions (such as defined work products or required process data)

1.2.3 Forms

Forms provide a convenient and consistent framework for gathering and retaining data. Forms

specify the data required and where to record them. As appropriate, forms also define needed

calculations and data definition. Paper forms may be used if automated tools for data gathering

and recording are not readily available.

In PSP, checklists are specialized forms used to guide personal reviews. Each checklist item veri-

fies an aspect of the product's correctness or conformance with standards or specifications. The

checklist items include the most frequently occurring defects that can be found with a review. The

entire product is reviewed with a focus on only one checklist item at a time. As the review for

each item is done, that item is marked complete. When the entire checklist has been completed, it

serves as a record of the review.

1.2.4 Measures

Measures quantify the process and the product. They provide insight into how the process is

working by enabling users to

15 | CMU/SEI-2009-SR-018

 develop data profiles of previous projects that can be used for planning and process im-

provement

 analyze a process to determine how to improve it

 determine the effectiveness of process modifications

 monitor the execution of their process and make next-step decisions

 monitor ability to meet commitments and take corrective actions as needed

1.2.5 Standards

Standards provide precise and consistent definitions that guide the work and the gathering and use

of data. Standards (such as coding, counting, and defect standards) enable measures to be applied

uniformly across multiple projects and to be used consistently. PSP practitioners should be able

to recognize areas where standards would be useful and create them when needed.

Knowledge Area 1.3: Measurement Principles

This knowledge area describes process and product measurement and explains why measures are

essential for producing high-quality work.

1.3.1 The need for measures

Measures are used in the PSP so that process changes can be identified, assessed, logically im-

plemented, and judged as effective or ineffective.

1.3.2 Measurement types

To be useful for process management, all measures should be defined, precise, accurate, and sig-

nificant. There are two main types of measures used in PSP: artifact measures and process meas-

ures.

 Artifact measures are used to quantify product characteristics, such as product size or defects

found per element.

 Process measures describe or quantify the development or repair process used, and are clas-

sified either as historical or current measures.

 Historical process measures are used after the process has been performed to record ac-

tual data such as inspection time, test time, and so on.

 Current process measures are used while the process work is being performed to record

data such as duration of inspection meetings, code review time as a percentage of coding

time, and the like.

Both artifact and process measures may be based on single or multiple measurements. The choice

of single or multiple measures depends on the nature of the data and the use for that measure.

When multiple measures are taken, a statistically sound procedure is needed to calculate the val-

ues to be used from these measures.

16 | CMU/SEI-2009-SR-018

1.3.3 Defined measures

A defined measure is one that has an explicit and unambiguous meaning. For process measures,

this requires the process to be precisely defined to include entry and exit criteria for every phase.

The properties to be measured in the process must also be completely and explicitly defined.

1.3.4 Precise and accurate measures

A precise measure is one that specifies a value to a suitable level of precision, as with a specific

number of digits after the decimal point. An accurate measure is one that correctly measures the

property being measured. Measures can be precise and accurate, precise but inaccurate, imprecise

but accurate, or both imprecise and inaccurate. For process management purposes, measures

should be as precise and accurate as possible.

1.3.5 Meaningful measures

To be meaningful, measures must actually represent the true value of the process or product prop-

erty being measured, thus indicating that the measurement represents an objective characteristic of

a real phenomenon. The measurement’s significance increases with the number and consistency

of the measurements that are taken.

1.3.6 Uses of process measures

Process measures can be used to evaluate product or process characteristics, to estimate product or

process elements, or to predict future outcomes. They can also be used as the basis for determin-

ing improvement opportunities and their likely individual and business objectives.

Knowledge Area 1.4: Statistical Elements

Statistics are the foundation for PSP planning and tracking methodologies and also provide an

objective means of analyzing and improving personal processes. (Note: PSP-specific definitions,

interpretations, or application of statistical terms or elements are called out in each applicable

knowledge area subsection.)

1.4.1 Distributions

A distribution is a set of numerical values that are generated by some common process (actual

sizes of parts developed or size estimates).

1.4.2 Mean

The mean is the arithmetic average value of a distribution. In the PSP, the mean is typically an

estimate of the mean of the distribution, not the actual mean.

1.4.3 Variance

Variance is a measure of the spread or tightness of a distribution around the mean. In the PSP, the

variance is typically an estimate of the variance of the distribution, rather than the actual variance.

17 | CMU/SEI-2009-SR-018

1.4.4 Standard deviation

Standard deviation is the square root of the variance. It is often used to characterize the expected

range of deviation between an estimate and an actual value. For example, one method in PSP uses

standard deviation to categorize software size into relative size tables. Standard deviation is also

used as part of the calculation of prediction intervals.

1.4.5 Correlation

Correlation is a measure of the degree to which two sets of data are related. In the PSP, correla-

tion is measured between estimated and actual size and between estimated size and actual effort.

1.4.6 Significance of a correlation

Significance measures the probability that two data sets have a high degree of correlation by

chance. Estimates of size and effort in the PSP are more reliable when based on historical data

that have a high degree of correlation that is significant.

1.4.7 Linear regression

Linear regression determines the line through the data that minimizes the variance of the data

about that line. For example, when size and effort are linearly related, linear regression can be

used to obtain effort estimates from size estimates.

1.4.8 Prediction interval

The prediction interval provides the range around an estimate made with linear regression within

which the actual value will fall with a certain probability. For example, in PSP, the 70% predic-

tion interval for an estimate of size or time implies a 0.7 probability that the actual value of size or

time will be within the range defined by the prediction interval.

1.4.9 Multiple regression

Multiple regression is used in the PSP when estimations of size or time depend upon more than

one variable. For example, if modifications to programs require much more time than additions,

then ―added‖ and ―modified‖ can be separated into two variables for the regression calculation.

1.4.10 Standard normal distribution

The standard normal distribution is a normal distribution translated to have a mean of zero and

standard deviation of one. The standard normal distribution is used in the PSP when constructing

a size estimating table.

1.4.11 Log-normal distribution

Many statistical operations assume that data values are normally distributed, but some PSP meas-

ures do not meet this requirement. For example, size values cannot be negative but can have

small values that are close to zero. These distributions also typically have higher probability at

large values than a normal distribution. When a log transformation is applied to data sets of this

18 | CMU/SEI-2009-SR-018

type, the resulting distribution may be normally distributed and, therefore, suitable for statistical

analyses that assume normally distributed data. Statistical parameters for the normal distribution

may be calculated and then transformed back to the original distribution. Size data in the PSP are

generally log-normally distributed, so they must be transformed into a normal distribution for

construction of a size estimating table.

1.4.12 Degrees of freedom

Degrees of freedom (df) measures the number of data points (n), as compared to the number of

parameters (p) that are used to represent them. In linear regression, two parameters (β0 and β1)

describe the line used to approximate the data. Since at least two points are needed to determine a

line, the number of degrees of freedom is n-2. In general, the number of degrees of freedom is n-

p.

1.4.13 The t-distribution

The t-distribution enables estimation of the variance of a normal distribution when the true para-

meters are not known, thus enabling calculation of statistical parameters based upon estimates

from sample data. Like the normal distribution, it is bell-shaped, but it varies depending upon the

number of points in the sample. For fewer data points, the distribution is short with fat tails. As

the number of data points increases, the distribution becomes taller with smaller tails and ap-

proaches the normal distribution. In PSP, the t-distribution is important because it helps to deter-

mine the significance of a correlation and the prediction interval for regression, each of which is

dependent upon the number of points in the sample data set.

19 | CMU/SEI-2009-SR-018

Competency Area 2: Basic PSP Concepts

The second competency area outlines the basic process improvement concepts and skills on which

the PSP is built. The major knowledge areas composing this competency area are as follows:

2.1 Process Fidelity – This knowledge area introduces the concept of process fidelity and ad-

dresses the effect of process fidelity on process quality.

2.2 Data Collection – This knowledge area addresses skills and concepts related to gathering

and using process data.

2.3 Data Measures – This knowledge area describes the four basic PSP measures.

2.4 Data Analysis – This knowledge area describes the knowledge and skills needed by PSP

practitioners to analyze the process data that they collect.

2.5 Process Improvement – This knowledge area describes the knowledge and skills needed

by PSP practitioners to improve their own defined personal process.

References: The subject matter covered in this competency is detailed in the following works:

[Feiler 92]

[Humphrey 95, Chapters 1, 2, 7, 13]

[Humphrey 05a, Chapters 1, 2, 13]

[Humphrey 05b, Chapters 4-9]

[Humphrey 06, Chapter 11]

Knowledge Area 2.1: Process Fidelity

This knowledge area introduces the concept of process fidelity and addresses the effect of process

fidelity on process quality.

2.1.1 Process fidelity

Process fidelity (sometimes called process discipline or process compliance) is the degree to

which individuals follow their own defined personal process. The objective of process fidelity is

to improve work performance and produce higher-quality products. Unless the process is fol-

lowed faithfully, process improvement is not possible.

2.1.2 Process fidelity and useful data

In order to have meaningful data for implementing and improving a personal process, the process

must be followed as defined.

20 | CMU/SEI-2009-SR-018

2.1.3 Process fidelity and product quality

The quality of the product is governed by the quality of the process used to develop it. It is not

enough to define a high-quality process; individuals also must follow that process when develop-

ing the product. Creating and consistently using a high-quality process will result in the produc-

tion of high-quality products. Product quality, in turn, has a direct effect on an individual’s ability

to meet the schedule and budgetary objectives for the product.

2.1.4 Process fidelity and planning

When a project is planned in accordance with effective and efficient processes and estimates are

made based on solid data, the resultant delivery commitment date probably will be accurate.

When projects are conducted according to the details contained in an accurate plan, they are deli-

vered on schedule consistently, as long as the work is completed using the defined processes and

adjustments are made to the plan to reflect changes in the project conditions. If the defined

process is not followed, the plan no longer relates to what is being done, and it becomes impossi-

ble to track the progress against the plan accurately. Precise project tracking requires accurate

data.

2.1.5 Process fidelity and performance improvement

A well-defined and measured process that is followed faithfully enables individuals to select the

methods that best suit their particular abilities and support the tasks that they need to perform.

Individuals must personally use well-defined and measured processes in order to consistently im-

prove their performance.

Knowledge Area 2.2: Data Collection

This knowledge area addresses the skills and concepts related to gathering and using process data.

2.2.1 Collecting data

The PSP is based on data because individuals cannot improve their work processes unless they

understand precisely how they work and exactly what they do. Data should be used to indicate

areas for improvement and to provide a baseline for measuring the effects of changes to the

process. Benefits of collecting and analyzing data include:

 establishing standards for products and processes

 determining if a specific product or process meets its defined criteria

 precisely controlling individuals’ work

 developing indicators of individuals’ performance

 improving personal performance

 managing the quality of the products produced

 estimating when the work will be finished

 precisely planning, tracking, and reporting on the work

21 | CMU/SEI-2009-SR-018

2.2.2 Collecting useful data

To be most useful, data should be collected in accordance with the following guidelines.

 The data collection process must have specific objectives and plans.

 The actual data should be selected for its relevance in implementing a model or testing a hy-

pothesis.

 The data should be collected by the people who are actually going to use it, and they should

understand its importance and take appropriate care to gather accurate and relevant informa-

tion.

 The data collection process must include consideration for the impact of data gathering on

the organization and its people.

 The data-gathering plan must have management support; management must regard data col-

lection as an investment with potentially high pay-offs in terms of being able to accurately

predict product development costs and schedules, as well as providing a basis for improving

an organization’s efficiency and the quality of its products.

2.2.3 Collecting high-quality data

Software data are highly error-prone. The best way to ensure that data are of high quality is to

train individuals in the proper methods for taking process measures and recording the data that

they collect. Using automated tools for data collection, when appropriate tools are available, can

help to improve data quality by providing individuals with a convenient means for capturing

process information immediately after the data become available.

2.2.4 Ensuring data quality

The best way to ensure that high-quality data are collected is to require individuals to collect their

own information in real time (or as soon as possible after the data are generated). However, indi-

viduals must be certain that their personal process data will not be used to assess their perfor-

mance; if people fear that their data will be used to rate or punish them, they will not collect accu-

rate data, if they collect any data at all.

2.2.5 Using data for planning purposes

High-quality data are useful for making accurate personal plans; however, any data (regardless of

quality) are better than no data at all. Whenever possible, every product, job, or project should be

planned using estimates that are based on analogous historical data (see 2.3 for types of data

measures that are typically used for estimates).

 The best estimates are based on actual data from one or more prior products, jobs, or projects

of a similar nature.

 The more similar the prior efforts are to the one being planned, the more accurate the esti-

mate is likely to be.

 The more historical data are used when making an estimate, the more accurate the estimate is

likely to be.

22 | CMU/SEI-2009-SR-018

 Estimating a large job or an entire project as a composite of multiple smaller work products

or sub-projects is more accurate than estimating the project as a single large unit.

Knowledge Area 2.3: Data Measures

This knowledge area describes the four basic PSP measures.

2.3.1 Basic PSP measures

The basic PSP measures are time, size, quality (defects), and schedule data.

2.3.2 Time measures

Time is measured in minutes and is tracked while doing the work because time recorded later is

more likely to be inaccurate. Basic components are start date, start time, end date, end time, in-

terrupt time, off-task time, and delta time. The time in phase is the planned or actual time spent in

a particular phase of the process.

 Interrupt time is not included in the time measurement for a task or process phase. If there is

an interruption during the work, that time is subtracted from the time measurement.

 Off-task time is the time spent doing things other than planned project tasks; generally, it is

not measured or tracked, since it does not contribute to meeting the stated schedule goals.

Off-task time includes time spent in management and administrative meetings, attending

training classes, reading email, or any of the other essential activities that a team member

must do. Off-task time for a given task or work period is calculated by subtracting the total

delta time from the total elapsed time spent on a task.

 Delta time is the actual time that it took to complete a task or process phase. It is calculated

as end time minus start time (less any interrupt time).

Time data are most accurate when collected using an automated tool; the tool should be able to

record start and stop times and dates, calculate the elapsed time, and subtract interruption time

from elapsed time to calculate the delta time. Each entry for time data should also include the

names of the process phase/step, the product and element being worked on, the project task being

performed, and the person doing the work.

2.3.3 Size measures

A size measure is used to measure how big a work product is. Size measures are selected so that

they are appropriate to the work product, for example, using pages (vs. words or letters) as a

measure for text pages, or taking programming tasks and language into account for software com-

ponents (see Knowledge Areas 3.1 and 3.2). Size measure data should be collected in real time

to the extent possible because data collected after the fact is more likely to be inaccurate. Size

measures apply not only to the final deliverable products, but also to the component parts and in-

terim versions of the product.

Size data are most accurate when collected using an automated tool that will record both the

planned and actual sizes for the various product parts or components, using the size accounting

23 | CMU/SEI-2009-SR-018

measure categories described in 3.1.6. The tool must calculate totals for each category of size

data or otherwise ensure the self-consistency the data being collected.

2.3.4 Quality measures (defect data)

In PSP, product quality is measured in terms of defects. A defect is anything in the program or

software product that must be changed for it to be properly designed, developed, maintained, en-

hanced, or used. Defects can be in the code, designs, requirements, specifications, or other docu-

mentation. Defects should be recorded as soon as they are discovered, preferably using an auto-

mated tool. The following data should be collected for every defect injected: defect identifier

number, date when the defect was discovered, phase when the defect was injected, phase when

the defect was removed, defect type, time to find and fix the defect, and a brief description of the

defect.

A new defect may be injected while fixing another defect. In this case, the second defect is rec-

orded separately, with a reference (called the fix reference) back to the original defect. The time

required to fix each defect includes the total time required to find and fix the problem, and vali-

date the correction. Fix time is recorded separately for each defect.

2.3.5 Defect type standard

The defect type standard defines categories into which similar defects can be placed. Consistent

assignment of similar defects to the same defect type category is essential for process analysis.

2.3.6 Schedule measures

Schedule measures are used to plan when the project should be complete and to track progress

against the plan. Schedule data are most accurate when collected using an automated tool that

will record planned task names and descriptions, phases in which the work is to be done, prod-

uct/element involved, applicable committed dates for completing tasks, and the dates on which

tasks were completed. Schedule data should be collected in real time to the extent possible, par-

ticularly information regarding task completion dates, since this is the primary means of obtaining

earned value (EV) credit that allows individuals to track their progress against the planned sche-

dule (see 4.5).

2.3.7 Derived measures

The PSP provides a set of performance and quality measures to help individuals implement and

improve their personal processes. Specific derived measures are discussed in later knowledge

areas.

Knowledge Area 2.4: Data Analysis

This knowledge area describes the knowledge and skills needed by PSP practitioners to analyze

the process data that they collect.

24 | CMU/SEI-2009-SR-018

2.4.1 Measurement framework and data analysis

All of the PSP measures are related. Individuals must understand how each measure relates to the

others and how they can be used to derive measures that provide information on process effec-

tiveness.

2.4.2 Postmortem

A postmortem analysis of the work conducted at the completion of a phase or project provides

valuable information, including

 updated project data for time, size, defects, and schedule (actual, to-date, and to-date %)

 updated calculations for quality or performance data

 a review of performance against the plan

 updated historical databases for size and productivity

 process adjustments needed, based on personal data (notes made on process improvement

proposal (PIP) forms, changes in design or code review checklists indicated by defects that

escaped a phase, and so on)

2.4.3 Performance measures

The key performance measures of the personal process are

 ability to meet schedule commitments for delivery of promised content

 quality of delivered content

 project-specific measures

2.4.4 Performance baselines

Before individuals can improve their performance, they first must understand the level of their

current performance. After gathering enough project data to provide a meaningful amount of in-

formation for analysis, individuals should conduct a baseline analysis of their to-date performance

and formulate appropriate process changes to improve their performance in problem areas.

2.4.5 Combined measures

Measures can be combined to provide useful data for future project plans and process improve-

ments. For example, measures from multiple projects can be combined to create a chart showing

trends in estimated size vs. actual size to provide data for future size estimates.

2.4.6 Analyzing historical data

Data should be examined to determine whether they are appropriate for analysis. For example,

data from projects based on the C# language may not provide an appropriate correlation for ana-

lyzing projects based on the C++ language. Historical data also should be examined to determine

whether the correlation is adequate and significant as a basis for project and process measurement

and analysis.

25 | CMU/SEI-2009-SR-018

2.4.7 Analyzing size-estimating accuracy

Historical personal process data for estimated size vs. actual size can be analyzed as a way to de-

termine possible causes for misestimates. Consider the following questions.

 How often is the estimate vs. actual within the 70% prediction interval?

 Is there a tendency to miss parts in the conceptual design?

 What could be done to improve estimates?

 Are the size estimates biased in any way?

 Is there a tendency to misjudge relative sizes of parts?

 Are the size estimates improving over time?

2.4.8 Analyzing effort-estimating accuracy

Historical personal process data for estimated effort vs. actual effort can be analyzed to determine

possible causes for misestimates. Consider the following questions.

 How often is the estimate vs. actual within the 70% prediction interval?

 Do the size estimate errors correlate with the effort estimate errors?

 Do underestimated projects correlate with a larger percentage of rework?

 Are the effort estimates improving?

 What could be done to improve estimating accuracy?

2.4.9 Analyzing size and time relationships

Historical personal process data can be analyzed to determine any relationship between size and

effort. Consider the following questions.

 Is productivity stable? Why or why not?

 Are there any quantitative differences between higher and lower productivity projects? If so,

what might explain these quantitative differences?

2.4.10 Analyzing phase yields

Historical personal process data for phase yields can be analyzed to identify problems and to gen-

erate PIPs for possible improvements. Consider the following questions.

 Is there a relationship between yield and review rate (size reviewed per hour) for design and

code reviews?

 Are sufficient defects being found in the proper phases?

 Are reviews being conducted effectively?

 What are the personal defect-removal leverages for various appraisal/failure phase combina-

tions? How might these leverages be improved?

26 | CMU/SEI-2009-SR-018

2.4.11 Analyzing defects injected per phase

A Pareto analysis of defect types is a useful tool for analyzing historical personal process data for

defects injected per phase. Consider the following issues.

 Determine which types of defects occur most often.

 Determine which types of defects take longest to find and fix.

 Analyze the per-phase and overall trends for defects injected per size unit.

 Analyze the per-phase and overall trends for defects injected per hour.

2.4.12 Determining the cost of rework

Data can be analyzed to determine the cost of rework. Consider these aspects when performing

an analysis.

 Determine the percentage of PSP project time that defect-free testing would take.

 Determine how long testing takes for PSP projects.

 Determine what types of defects cost the most in terms of time to find and fix (per phase and

per project).

 Determine the types of defects most commonly found in personal compiling and testing.

 Determine the types of defects most commonly found in product testing and in the delivered

product.

 Generate a Pareto analysis to identify the phases in which the defects found in the product

were injected.

Knowledge Area 2.5: Process Improvement

This knowledge area describes the knowledge and skills needed by PSP professionals to improve

their own defined personal process.

2.5.1 Rationale for process improvement

The reasons for implementing process improvements are to improve the predictability and quality

of delivery, reduce cycle time, and maintain or improve productivity.

2.5.2 Scope for process improvement

Many kinds of processes can and should be used, including personal, team, and organizational

processes.

 Although the people involved in process improvement will vary with the process type, the

principles and methods are identical for all process types.

 The people who should perform the improvement work are the people who use the process:

team members, teams, or even entire organizations. People who are not currently using the

process are typically incapable of defining usable and helpful improvements for those who

are.

27 | CMU/SEI-2009-SR-018

 Large process improvement breakthroughs are rare, but small changes can be made almost

every time a process is used.

2.5.3 Benchmarks for process improvement

Benchmarks can help individuals in motivating and guiding their process improvement efforts.

The general strategy for obtaining and using process benchmarks is as follows.

 Identify one or more projects doing similar work.

 Establish benchmarking agreements with the individual(s) doing the similar work. In doing

so, consider

 similarity of the work

 opportunities for the teams to interact and share relevant data

 confidential material

 disclosure provisions

 data release and/or publication

 management review and oversight

 Select best-of-class benchmarks from among the cooperating projects.

 Regularly establish and update benchmark goals for cost, schedule, and quality performance.

2.5.4 Set performance improvement goals based on data

Before implementing any process changes, PSP practitioners should analyze historical process

data to determine root causes of past performance problems. Performing an analysis on their per-

formance baselines should help individuals to determine the most important areas for improve-

ment. Once potential changes have been identified, it is important to set measurable performance

improvement goals (e.g., ―reduce cost of rework by 20%‖) to know when the desired improve-

ment has been achieved.

2.5.5 Record process improvement suggestions

The PSP uses a Process Improvement Proposal (PIP) form to capture problems with using the

process and suggestions for improving or modifying it. Keep the PIP form at hand at all times for

recording insights into opportunities for process improvement before those insights are lost.

2.5.6 Implement highest payoff improvements first

Personal data analysis generates many PIPs. Practitioners should choose to implement the PIPs

that offer the highest potential improvement in comparison to the effort required to make the

changes.

2.5. 7 Measure process changes

Because PSP professionals use personal processes as the basis for doing their work, practitioners

must understand how to update their processes to reflect any changes made to those processes.

They should also be aware of the impact that changes may have on the applicability of their his-

torical process data to future work based on the altered process.

28 | CMU/SEI-2009-SR-018

2.5.8 Monitor performance results

To determine if implemented process improvements have been effective, PSP practitioners should

periodically repeat the steps for baselining their work processes and compare their baseline per-

formance to previously established improvement goals. When so doing, practitioners should be

careful to avoid the complications of bolstering and clutching.

 Bolstering is the selective recall of only those results that reinforce an opinion or belief,

usually manifest by forgetting failures and remembering only successes. Use of all PSP data

from all projects should preclude bolstering.

 Clutching is the tendency to perform badly when under pressure or when a good outcome is

especially critical, thereby negating successful performance on past projects when using the

same processes. By following established processes and using data (rather than instinct) as a

basis for instantiating process changes, clutching can be minimized or avoided.

2.5.9 Watch for improvement opportunities

When working on PSP projects, practitioners should watch for new problem areas and be aware

of ideas for continued improvement.

29 | CMU/SEI-2009-SR-018

Competency Area 3: Size Measuring and Estimating

This competency area describes the size measurement and estimating concepts on which the PSP

is built. The essential elements of size measurement and estimating are the ability to define ap-

propriate size measures and to use disciplined methods and historical data to estimate size. The

major knowledge areas composing this competency area are as follows:

3.1 Size Measures – This knowledge area outlines the objectives of measuring size, the crite-

ria for selecting a size measure, and the PSP size accounting system.

3.2 Size Data – This knowledge area discusses the primary ways that size data are used in the

PSP.

3.3 Size Estimating Principles – This knowledge area discusses the principles upon which the

PSP size estimating process is based. The PSP supports many size estimating methods, but all

methods must adhere to these principles.

3.4 Proxies – This knowledge area discusses selecting and organizing proxy data.

3.5 The PROBE Estimating Method – The PSP uses a defined estimating process called

PROxy Based Estimating (PROBE). This method is used to estimate both size and effort. This

knowledge area defines how size estimates are made using the PROBE method.

3.6 Combining Estimates – This knowledge area discusses the various ways that estimates

can be combined

3.7 Size Estimation Guidelines – This knowledge area discusses the limitations of size esti-

mating.

References: The subject matter covered in this competency is detailed in the following works:

[Humphrey 95, Chapters 4, 5, Appendix A]

[Humphrey 97, Chapters 6, 10]

[Humphrey 00]

[Humphrey 05a, Chapters 3, 5, 6]

[Humphrey 06]

Knowledge Area 3.1: Size Measures

This knowledge area outlines the objectives of measuring size, the criteria for selecting a size

measure, and the PSP size accounting system.

30 | CMU/SEI-2009-SR-018

3.1.1 Rationale for using size measures

Objectives for using size measures include

 achieving consistency in describing size

 normalizing time and defect data

 making better size estimates and plans

3.1.2 Types of measures

Measures may be categorized as

 absolute or relative

 explicit or derived

 objective or subjective

 dynamic or static

 predictive or explanatory

3.1.3 Criteria for size measures

Useful size measures must be

 related to development effort

 Does the size of the product statistically correlate with development effort?

 Does time spent on development of the measured part of the product represent a signifi-

cant part of the project’s work?

 precisely defined

 directly countable

 suitable for early planning

3.1.4 Counting standards

Counting standards provide guidance that is

 precise about what to count

 application/language specific

 invariant, providing the same outcome each time the standard is applied

3.1.5 Physical and logical size

A physical size measure provides information about the size of a physical entity (the actual num-

ber of occurrences of an item in some product). A logical size measure also provides size infor-

mation but relies on counting groupings of physical entities that can logically be grouped together.

Physical size measures are based on a simple objectively described standard – a number that is

arrived at no matter who is counting. The logical size measure of a physical entity does not nec-

essarily correspond to the physical size measure of that same entity, depending on the counting

standard defined for the logical measurement.

31 | CMU/SEI-2009-SR-018

3.1.6 Size accounting

PSP size accounting methods for planned, actual, and to-date size define the measures for

 base (B): the unmodified program to which subsequent enhancements are added

 added (A): code that is added to the base code

 modified (M): the part of the base code that is changed

 deleted (D): the part of the base code that is subsequently removed

 reused (R): an existing part or item that is copied unchanged from a source other than the

base

 added and modified (A&M): all added and modified code

 new reusable (NR): a part or item that is developed with the intention of later reusing that

part or item

 total (T): the size of the entire program

3.1.7 Using the size measure selection procedure

Steps for selecting size measures are as follows.

1. Gather product development data (resources required, product characteristics measures, any

special development conditions, etc.).

2. Rank the products by required resources.

3. Identify the characteristics that distinguish the products that took the greatest effort from

those that required the least effort.

4. Select a size measure or size measures. For the candidate size measure(s) determine correla-

tion between size and required resources. If there is no correlation, repeat steps 3 and 4 for

other candidate size measures.

Some typical size measures include

 database elements: A count of the fields, queries, or other commonly used elements in a da-

tabase product.

 lines of code (LOC): A count of the logical lines of code in a product.

 screen elements: A count of the elements in a user interface or other GUI product.

 document size: A count of document pages, lines, words, or characters.

 design size: A count of the classes, data definitions, interface specifications, or GUI charac-

teristics defined.

 requirements size: A count of requirements pages, shall statements, or function points.

Knowledge Area 3.2: Size Data

This knowledge area discusses the primary ways that size data are used in the PSP.

32 | CMU/SEI-2009-SR-018

3.2.1 Size data help to make better plans

Size and time are often correlated, and when they are, size estimates can be used to estimate ef-

fort. Plans can then be created based on the size and effort estimates.

3.2.2 Size data are useful for tracking development effort

Size and time are often correlated, and when they are, the size estimates can be used to track ef-

fort.

3.2.3 Size data help in assessing program quality

Normalizing defect data based on size permits determining the

 quality of all or some part of the development process

 relative defect content of some parts of large programs

 future workload for maintenance and support

Knowledge Area 3.3: Size Estimating Principles

This knowledge area discusses the principles upon which the PSP size estimating process is

based. The PSP supports many size estimating methods, but all methods must adhere to these

principles.

3.3.1 Estimating is uncertain

No one knows how big the product will be, and the earlier in the process that the estimate is made,

the less is known. Estimating can be biased by business needs and other pressures.

3.3.2 Estimating is a learning process

Estimating improves with experience and with data.

3.3.3 Estimating is a skill

Some people will be better at estimating than others. Most people improve at estimating with

deliberate practice.

3.3.4 Strive for consistency

The objective of the size estimating process is to follow a process that consistently produces un-

biased estimates. Doing so will balance the over-estimates and under-estimates.

3.3.5 Use defined methods for making estimates

Using a defined size estimating process facilitates learning, provides a framework for using his-

torical data, establishes a baseline against which improvement can be measured, and helps to re-

move bias from the process.

33 | CMU/SEI-2009-SR-018

3.3.6 Estimates are subject to error

The accuracy of estimates will fluctuate around some mean. Estimates may also have some bias.

3.3.7 Estimate in detail

When estimating in parts, the total error will be less than the sum of the part errors, assuming that

the parts are estimated independently. Estimating in detail also helps to ensure that the estimate is

complete.

3.3.8 Use historical data to make estimates

When making size estimates, find a way to use whatever historical data are available.

Knowledge Area 3.4: Proxies

This knowledge area discusses selecting and organizing proxy data.

3.4.1 Using proxies instead of a size measure

Most size measures that meet the required criteria are not available during planning. A proxy is a

stand-in measure that relates product size to planned function and provides a means in the plan-

ning phase for judging (and therefore, of estimating) a product’s likely size..

3.4.2 Criteria for choosing a proxy

The criteria for good proxy are as follows.

 The proxy size measure should closely relate to the effort required to develop the product

and correlate with development costs.

 The proxy content of a product should be directly countable.

 The proxy should be easy to visualize at the beginning of a project.

 The proxy should be customizable to the needs of each project and individual

 The proxy should be sensitive to implementation variations that affect cost or effort.

3.4.3 Using relative size tables

Relative size tables are used to organize proxy data so that historical proxy data can be used to

estimate the size of similar new parts.

3.4.4 Building a relative size table

The PSP defines two procedures for building a relative size table from historical data: the sort

method and the standard deviation method. Other methods may be used, but they must adhere to

the size estimating principles.

34 | CMU/SEI-2009-SR-018

3.4.5 Building a relative size table with the sort procedure

When using the sort procedure for building a relative size table, the parts are separated into func-

tional categories such as calculation, text, data, etc. The table is populated by completing the fol-

lowing steps for each category:

1. Sort the size data.

2. Pick the smallest value as very small (VS).

3. Pick the largest value as very large (VL).

4. Pick the median value as medium (M).

5. For large (L) and small (S), pick the midpoints between M and VL, and M and VS, respec-

tively.

3.4.6 Building a relative size table with the standard deviation procedure

When using the standard deviation procedure for building a relative size table, the parts are sepa-

rated into functional categories such as calculation, text, data, etc. The table is populated by com-

pleting the following steps for each category:

1. If the data are log-normally distributed (as is usually the case with program size data), trans-

form the data into a normal distribution by calculating the natural log of each datum; else

skip this step.

2. Calculate the mean (avg) and standard deviation (σ) of the data set.

3. Calculate the size midrange points by assigning VS = avg–2σ; S = avg–σ; M = avg; L =

avg+σ; VL = avg+2σ.

4. If the original data were log-normally distributed, apply the inverse transformation by calcu-

lating the anti-log of each of VS, S, M, L, and VL; else do nothing.

Knowledge Area 3.5: The PROBE Estimating Method

The PSP uses a defined estimating process called PROxy-Based Estimating (PROBE). This me-

thod is used to estimate both size and effort. This knowledge area defines how size estimates are

made using the PROBE method.

3.5.1 What is PROBE?

PROBE is a procedure for estimating size and effort. The overall procedure is as follows.

1. Develop the conceptual design (see 3.5.2).

2. Identify and size the proxies.

3. Estimate other elements.

4. Estimate program size. (Select the appropriate PROBE method, as described in 3.3.5.)

5. Calculate prediction intervals (for methods A and B only) (see 3.5.8).

35 | CMU/SEI-2009-SR-018

3.5.2 Conceptual design

The conceptual design is a high-level postulation of the product elements and their functions. The

conceptual design subdivides a desired product into its major parts. The conceptual design is used

solely as a basis for producing size and effort estimates (see 4.2.4) and may not necessarily reflect

how the actual product is designed and built.

3.5.3 Formulate size estimates for proxies

Compare the size of new parts in the conceptual design against similar parts in the historical data-

base to judge type and relative size. Use the number of items per part and historical size/part data

to estimate proxy size.

3.5.4 Formulate estimates for various types of program elements

 Count base size (B).

 Estimate modifications (M).

 Estimate deletions (D).

 Estimate base additions (BA).

 Estimate parts additions (PA).

 Estimate reused (R).

 Estimate planned new reusable (NR).

3.5.5 Select the appropriate PROBE method

1. Check to see if method A can be used by ensuring that your data meet the criteria below, and

assessing correlation, β0, and β1.

 You have three or more data points (estimated E and actual A&M) that correlate.

 The absolute value of β0 is less than 25% of the expected size of the new program.

 β1 is between 0.5 and 2.

 If PROBE method A can be used, then calculate the projected size as y = β0+ β1(E),

where

 y = projected added and modified size

 E = estimated proxy size

 β0 and β1 are calculated using estimated proxy size and actual added and modified size

2. If method A cannot be used, check to see if method B can be used.

 You have three or more data points (plan A&M and actual A&M) that correlate.

 The absolute value of β0 is less than 25% of the expected size of the new program.

 β1 is between 0.5 and 2.

If PROBE method B can be used, then calculate the projected size as y = β0+ β1(E), where

 y = projected added and modified size

 E = estimated proxy size

 β0 and β1 are calculated using plan added and modified size, and actual added and mod-

ified size

36 | CMU/SEI-2009-SR-018

3. If methods A and B cannot be used and you have historical data, use method C. Calculate

project size as y = β0+ β1(E), where

 y = projected added and modified size

 E = estimated proxy size

 β0 = 0

 β1 = ActualTotalAdded&ModifiedSizeToDate

 PlanTotalAdded&ModifiedSizeToDate

4. If you have no historical data, use method D, which is to use your judgment to estimate add-

ed and modified size.

3.5.6 Estimate program size

 Calculate estimated proxy size, E = BA + PA + M.

 Calculate projected A&M size, P = β0 + β1 (E), for methods A, B, and C. For method D,

P = your professional judgment

 Calculate planned added size, A = A&M – M.

 Calculate planned total size, T = P + B – M + R.

3.5.7 Count and calculate actual data for various program elements

 Count BA, PA, M, D, R.

 Calculate actual proxy size, E = BA+PA+M.

 Count actual total size, T.

 Calculate actual added size, A = T-B+D-R.

 Calculate actual added and modified size, A&M = A+M.

 Count actual new reusable, NR.

3.5.8 Prediction interval definition

The prediction interval is used in PROBE methods A and B. A prediction interval is

 the range within which the actual size is likely to fall 70% of the time

 not a forecast

 applicable only if the estimate behaves like historical data

Knowledge Area 3.6: Combining Estimates

This knowledge area discusses the various ways that estimates can be combined.

3.6.1 Combine independent estimates

Use this method to combine independent estimates.

1. Make separate linear regression projections.

2. Add projected sizes.

3. Add the squares of the individual ranges and calculate square root to calculate prediction

interval.

37 | CMU/SEI-2009-SR-018

3.6.2 Use multiple proxies

Use multiple regression when there is (a) correlation between development time and each proxy

and (b) the proxies do not have separate size/hour data.

1. Identify and size each proxy.

2. Use multiple regression to project program size.

y = β0 + x1β1 + x2β2 + . . . xmβm

3. Calculate prediction intervals.

UPI = projected size + range (70%)

LPI = projected size – range (70%)

Knowledge Area 3.7: Size Estimation Guidelines

This knowledge area describes the limitations of size estimating.

3.7.1 Clustered or grouped data

For data that are clustered or grouped, size estimates may not be very useful for estimating effort.

However, the size estimate still may be useful in estimating average effort.

3.7.2 Extreme data points

Extreme data points can lead to erroneous β0 and β1 values, even with high correlation. Estimates

made for points outside the range of the data used to calculate β0 and β1 are likely to be seriously

in error.

3.7.3 Unprecedented products

Resist making an estimate until the completion of a feasibility study and development of proto-

types. Do not confuse making an estimate with guessing.

3.7.4 Data range

For data that are clustered or grouped, size estimates may not be very useful for estimating effort.

However, the size estimate still may be useful in estimating average effort.

38 | CMU/SEI-2009-SR-018

39 | CMU/SEI-2009-SR-018

Competency Area 4: Making and Tracking Project Plans

This competency area discusses the ability to use an estimate of software size to plan and track a

software project. Essential parts of project planning are the ability to construct a schedule, define

tasks, plan tasks to conform to the schedule, and to track task completion against the plan. The

major knowledge areas composing the competency area are as follows:

4.1 PSP Planning Principles – This knowledge area delineates the principles upon which the

PSP planning framework is based.

4.2 The PSP Planning Framework – This knowledge area delineates the framework that in-

tegrates PSP planning tasks, historical databases, and tracking activities. It also addresses using

PROBE to generate overall resource estimates.

4.3 Software Size and Effort – Project planning requires an estimate of software size (see

Competency Area 3). This knowledge area describes the relationship between size and effort.

4.4 Task and Schedule Planning – This knowledge area describes how to use an overall re-

source estimate to create a schedule that defines the tasks to be completed and the expected com-

pletion dates.

4.5 Schedule Tracking with Earned Value – The PSP earned value (EV) system is used to

track the progress of work completed against the schedule plan. This knowledge area discusses

calculating EV, using the EV to determine work progress against the plan, and revising the

planned schedule based on average EV earned to-date on the project.

4.6 Planning and Tracking Issues – Management must be kept informed of project status.

Projects that will not be completed on schedule may need to be replanned.

Reference: The subject matter covered in this competency is detailed in Chapters 4 and 7 of

[Humphrey 05a].

Knowledge Area 4.1: PSP Planning Principles

This knowledge area delineates the principles upon which the PSP planning framework is based.

4.1.1 Plan your work

The people who do the work are best suited to plan the work.

 Individuals should always develop a plan for the work before committing to or starting a

project. When individuals are involved in developing the plan, they are most likely to be

committed to that plan.

 Plans should be based on a defined process and historical data, and made at a level of detail

that is appropriate to the job to be done.

40 | CMU/SEI-2009-SR-018

 When it is difficult to make an accurate plan, start with a preliminary plan and replan often.

 When the plan does not fit the work, revise the plan.

4.1.2 What is a PSP plan?

A PSP plan

 defines the work and how it will be done

 is a basis for agreeing on the cost, schedule, and resources for a project

 is an organizing structure for doing the work

 is a framework for obtaining the required resources

 provides a record of what was initially committed

4.1.3 Detailed plans

Detailed plans guide individuals’ work and allow them to precisely track their progress. Detailed

plans are more accurate, provide more precise measures, and give better guidance than high-level

plans. Detailed plans also enable individuals to make accurate projections and realistic commit-

ments, be more productive, do higher-quality work, and maintain their motivation to meet other

plan goals.

Knowledge Area 4.2: The PSP Planning Framework

This knowledge area delineates the framework that integrates PSP planning tasks, historical data-

bases, and tracking activities. It also addresses using PROBE to generate overall resource esti-

mates.

4.2.1 Software product plan components

Components of a software product plan include the following.

 Project sizing: How large is the project and how much time will be required to do the whole

project?

 Project structure: How will the work be accomplished? How should the tasks be sequenced?

 Project status: What is the status of the project at any given time? How can the completion

date be estimated?

 Assessment: Compare the actuals to estimates. How good was the plan? How can the plan

be improved next time?

4.2.2 PSP planning framework

The PSP planning framework consists of seven basic tasks.

1. Define the requirements (see 4.2.3).

2. Produce the conceptual design (see 4.2.4).

3. Produce the product size estimate (see 3.5.5).

41 | CMU/SEI-2009-SR-018

4. Produce the resource estimate (see 4.2.6).

5. Produce the schedule (see 4.2.10 and 4.5).

6. Develop the product (see 4.2.11).

7. Analyze the process (see 4.2.12 and 2.3.2).

4.2.3 Requirements definition

Start by defining the work to be done, in as much detail as possible. The accuracy of the plan is

dependent on how much the individuals know about the work to be done at the time when the

work is being planned.

4.2.4 Produce the conceptual design

The conceptual design (see 3.5.2) is a preliminary approach to the product that names the ex-

pected objects and their functions. When making a conceptual design, several alternative ap-

proaches might be considered in order to choose the optimal approach to doing the development

work. For larger products, several steps may be needed to produce a conceptual design.

 Produce a preliminary list of product objects and their expected functions.

 Start with a system- or high-level product design.

 Subdivide the resulting parts to a level of detail that corresponds to existing elements in

the historical database (if any).

 Use the appropriate PROBE method to produce size and resource estimates.

 Total the element estimates to produce the product estimates.

4.2.5 Use PROBE for size and resource estimation

The PROBE method is used to estimate the size of the product and the time required to do the

work (see 3.5.5 and 4.2.6).

4.2.6 Select the appropriate PROBE method for resource estimation

 Check to see if method A can be used.

 You have three or more data points (estimated E and actual development time) that

correlate.

 The absolute value of β0 is near 0.

 β1 is within 50% of 1/(historical productivity).

 If method A cannot be used, check to see if method B can be used.

 You have three or more data points (plan A&M and actual development time) that

correlate.

 The absolute value of β0 is near 0.

 β1 is within 50% of 1/(historical productivity).

 If method B cannot be used and you have historical data, use method C.

 If you have no historical data, use method D.

4.2.7 To-date time in phase

To-date time in phase is the sum of the actual time in a given phase for a particular project plus

the to-date times in phase from historical projects.

42 | CMU/SEI-2009-SR-018

4.2.8 To-date percent time in phase

To-date percent time in phase is the percentage of to-date time in each phase.

4.2.9 Distributing time across phases

Planned time is distributed across phases using historical to-date percent for time in phase.

4.2.10 Schedule projection

An earned value schedule provides a projection of the project completion date (see 4.5).

4.2.11 Product development

Product development is guided by the defined personal process used to generate the plan. As the

work is done, individuals gather and record data.

4.2.12 Process analysis

At the end of a project, the gathered data are analyzed (see 2.3.2).

4.2.13 Cost performance index (CPI)

The cost performance index (CPI) is calculated as

planned total development time to date

actual total development time to date

Knowledge Area 4.3: Software Size and Effort

Project planning requires an estimate of software size (see Competency Area 3). This knowledge

area describes the software relationship between size and effort.

4.3.1 Size and effort correlation

Larger programming projects require more effort. Accurately estimating programming effort re-

quires use of a size measure that has a significant correlation with effort. Size data are suitable for

planning purposes if the r
2
 value is greater than 0.5 and if the tail area in the significance calcula-

tion is ≤ 0.05.

4.3.2 Productivity

Productivity is the ratio of a product’s size to the time expended to develop that product, generally

measured as size measure per hour.

Knowledge Area 4.4: Task and Schedule Planning

This knowledge area describes how to use an overall resource estimate to create a schedule that

defines the tasks to be completed and the expected completion dates.

43 | CMU/SEI-2009-SR-018

4.4.1 Project plan characteristics

A project plan must be

 accessible: easy to locate and reference

 clear: straightforward and easy to read

 specific: responsibilities and costs identified

 precise: appropriate level of precision

 accurate: based on relevant data and an unbiased estimating process

4.4.2 Period plans and project plans

A period plan covers a specific unit of time, such as a week or month. A project plan describes

all efforts and costs for developing a product.

4.4.3 Task hours and working hours

Task hours is a measure of the time spent working on defined project tasks. Working hours in-

cludes task hours and accounts for non-task activities such as time reading and answering e-mail,

attending meetings, etc.

4.4.4 Milestones

Milestones are key indicators of project progress. Their completion dates can be estimated so that

progress against them can be tracked and risks to their completion can be addressed before the

project goes seriously off-schedule.

4.4.5 Schedule plan requirements

Required elements for producing a schedule plan are

 a calendar of available time

 the order in which the tasks are to be completed

 estimated effort for each task

4.4.6 Task order

Task order is driven by the development strategy.

 Each task needs completion criteria.

 Task interdependencies must be defined.

4.4.7 Estimated task time

The time needed for task completion is estimated in one of several ways, using:

 the size of the product produced by the task and historic product data from similar tasks

 an overall estimate based on the to-date percent data from similar completed processes

 the appropriate PROBE estimating technique

44 | CMU/SEI-2009-SR-018

4.4.8 PSP schedule plans

Schedule plans are produced for PSP projects by following these three steps.

1. Pick an appropriate time period (e.g., three to six months from the planned start date).

2. Distribute the estimated available task time across the duration of the project schedule.

3. Calculate the cumulative planned schedule hours to the end of the project period.

4.4.9 PSP task plans

Task plans are produced for PSP projects by following these four steps.

1. Estimate the task time in hours (see 4.4.7).

2. Calculate the sum of the total planned hours.

3. Calculate the plan time period in which each listed task will be completed, based on the

schedule plan (see 4.4.8).

4. Calculate the planned schedule completion date of the project.

Knowledge Area 4.5: Schedule Tracking with Earned Value

The PSP earned value system is used to track the progress of work completed against the schedule

plan. This knowledge area discusses calculating EV, using the EV to determine work progress

against the plan, and revising the planned schedule based on average EV earned to-date on the

project.

4.5.1 Planned value (PV)

The planned value of a task is equal to its planned time expressed as a percentage of the total

planned time for the project. For example, a 5-hour task in a 50-hour project would have a PV of

10.

4.5.2 Earned value (EV)

Earned value is a method used for tracking the actual progress of completed work against the

overall project plan. As each task is completed, its PV is added to the cumulative EV for the

project. Partially-completed tasks do not contribute to the EV total.

4.5.3 Using EV measures

When using EV, keep these limitations in mind.

 The EV method assumes that the rate of task completion in the future will be roughly the

same as it was in the past. If this is not the case, the EV projections will not be accurate.

 The EV method measures progress relative to the plan. If the plan is inaccurate, the EV pro-

jections are also likely to be inaccurate.

45 | CMU/SEI-2009-SR-018

 The EV method assumes that the project’s resources are uniform. If the staffing level in-

creases, the EV projections will be pessimistic, and if the staffing is cut, the projections will

be optimistic.

4.5.4 EV as a measure of actual progress relative to planned progress

At any time during a project, the sum of value earned for completed tasks represents the percen-

tage of work that has been completed. A comparison of the cumulative EV to the cumulative PV

at a given time indicates progress of the work against the planned schedule.

 PV is the same as EV: work is on schedule

 EV is larger than PV: work is ahead of schedule

 PV is larger than EV: work is behind schedule

4.5.5 Project tracking with EV

During planning, the total PV for project tasks can be computed for each time period. Likewise,

adding up the EVs for completed tasks at any time period in a project determines the percentage

of completed work to-date for the project. At any point in the project, the EV can be compared to

the cumulative PV to determine if the project is on schedule, behind schedule, or ahead of sche-

dule (see 4.5.4 above).

4.5.6 Calculating PV for each task

PV for a task is calculated by dividing the estimated time (―planned time‖) for that task by the

total planned time for all tasks, then multiplying the quotient by 100.

4.5.7 Calculating PV for each time period

PV for a time period is calculated by adding the PVs for all tasks that are planned to complete

during that time period.

4.5.8 Calculating cumulative PV for a given time period

The cumulative PV to-date for a given time period is calculated by adding the PVs for all preced-

ing time periods to the PV for the given time period.

4.5.9 Calculating EV to-date against PV to-date

EV for a given time period and the cumulative EV for that time period can be calculated by using

the same procedure for calculating PV. The cumulative EV can be compared to cumulative PV to

determine if the project is on schedule (see 4.5.4 above).

4.5.10 Estimating the project completion date

The estimated project completion date can be calculated by computing the average EV per week

to-date and then using the average value for EV per week to compute the time necessary to com-

plete the remaining planned value. This assumes that the project continues to earn the average EV

rate as before.

46 | CMU/SEI-2009-SR-018

Knowledge Area 4.6: Planning and Tracking Issues

Management must be kept informed of project status. Projects that will not be completed on

schedule may need to be replanned.

4.6.1 Informing management of issues

Keep management informed of results from earned value analyses and inform them about sche-

dule problems. Data about project status may be helpful in obtaining management assistance.

4.6.2 When to adjust a plan

A plan should reflect the way that the individual is actually working. If it does not, the plan

should be revised. When work methods or processes are revised, the entire plan should be re-

examined.

4.6.3 Handling part-time assignments

Part-time assignments may be troublesome because task hours are divided among several projects.

Frequent switching between tasks makes work on any one task difficult, and hampers coordina-

tion with other team members on a project.

47 | CMU/SEI-2009-SR-018

Competency Area 5: Planning and Tracking Software Quality

This competency area describes the need to produce products that satisfy users’ needs, ways to

measure the degree to which user needs are met, and ways to produce high-quality products. The

major knowledge areas composing this competency area are as follows:

5.1 PSP Quality Principles – This knowledge area outlines the principles upon which the PSP

quality framework is based.

5.2 Quality Measures – PSP data enable determining measures of product and process quality

and the effectiveness of the process at removing defects.

5.3 Quality Methods – Personal reviews are an effective and efficient way to improve product

quality and individual productivity. Various review methods are effective in different situations.

5.4 PSP Code Reviews – Code reviews should follow a defined process and employ checklists

constructed from personal defect data. Consistency in following a review strategy based on expe-

rience can make reviews more efficient and effective.

5.5 PSP Design Reviews – Design reviews should follow a defined review process, including

appropriate design analyses, using checklists that are built on sound design principles. Consisten-

cy in following a review strategy based on measured experience can make reviews more efficient

and effective.

5.6 Review Issues – Reviews can be very effective if they are conducted using guidelines that

are based on extensive and quantified experience.

References: The subject matter covered in this competency is detailed in Chapters 8 and 9 of

[Humphrey 05a].

Knowledge Area 5.1: PSP Quality Principles

This knowledge area outlines the principles upon which the PSP quality framework is based.

5.1.1 Personal responsibility

To produce quality products, individuals must feel personally responsible for the quality of their

products (see 7.4). In order to build quality products consistently, individuals must be disciplined

in making and following plans, tracking and managing their personal time, and maintaining quali-

ty as the top priority.

5.1.2 The economics of quality

 It costs less to find and fix defects earlier in a process, rather than later.

 The longer a defect remains in a product, the greater the cost to remove it.

48 | CMU/SEI-2009-SR-018

 Testing is an inefficient and ineffective way to remove defects.

 It is more efficient to prevent defects than to find and fix them.

 The right way is always the fastest and cheapest way to produce a high-quality outcome.

 Reviews are fundamentally more efficient than testing for finding and fixing defects.

5.1.3 Product quality

A quality product is one that satisfies the customer. Such a product must satisfy a minimum thre-

shold of functionality and usefulness. The product should also satisfy user expectations with re-

spect to a number of other criteria.

 The product must work, i.e., perform with reasonable consistency. If this goal is not

achieved, then nothing else is important. Additional user concerns might include

 performance

 safety

 security

 usability

 functionality

 The product must provide functionality that the user needs and at the time the user needs it.

In many development projects, users’ perceptions of quality are frequently overlooked be-

cause individuals spend most of their time finding and removing defects.

5.1.4 Process quality

A quality process must meet the needs of its users to produce quality products efficiently. A qual-

ity process must

 produce a quality product consistently

 be usable and efficient

 be easy to learn and adapt to new circumstances

Knowledge Area 5.2: Quality Measures

PSP data enable determining measures of product and process quality and the effectiveness of the

process at removing defects.

5.2.1 Personal defect data

Personal defect data are useful in understanding and refining the personal process. Analysis of

these data provides a valuable resource for constructing personal review checklists.

5.2.2 To-date defects injected and removed

To-date defects injected and removed is the sum of the actual defects injected and removed for

each project phase, plus the to-date defects injected and removed per phase from historical

projects.

49 | CMU/SEI-2009-SR-018

5.2.3 To-date percent defects injected and to-date percent defects removed

To-date percent defects injected is the percentage of to-date defects injected in each phase. To-

date percent defects removed is the percentage of to-date defects removed in each phase.

5.2.4 Yield

Yield is the percentage of defects in the program that are removed in a particular phase or group of

phases. A yield measure can be calculated for any individual phase or group of phases.

5.2.5 Phase Yield

Phase yield is the percentage of defects removed during a phase.

5.2.6 Process Yield

Process yield is the percentage of defects removed prior to entering the compile phase (or before

entering unit test if there is no compile phase).

5.2.7 Review Yield

Review yield is the percentage of defects in the program found during the review.

5.2.8 Percent appraisal cost of quality (COQ)

Percent appraisal COQ is the percentage of development time spent in design and code review.

5.2.9 Percent failure COQ

Percent failure COQ is the percentage of development time spent in compile and test.

5.2.10 Cost of Quality (COQ)

Cost of quality is the percentage of time spent performing appraisal and failure tasks. COQ de-

fines quality issues in management and business terms. The principal COQ measures are:

 performance costs: the costs of doing the job in the first place

 appraisal costs: the costs of examining a product to determine its quality

 failure costs: the costs of fixing a defective product, including all the attendant costs of the

product’s failure

 prevention costs: the costs of devising and implementing measures to prevent failures

5.2.11 COQ appraisal to failure ratio (COQ A/FR)

COQ A/FR is the ratio of time spent in appraisal tasks to time spent in failure tasks.

5.2.12 Defect Density

Defect density is the number of defects found per size measure. It is normalized for product size

to enable comparison of various products and the processes that produced them.

50 | CMU/SEI-2009-SR-018

5.2.13 Process Quality Index (PQI)

The process quality index (PQI) is a derived measure that characterizes the quality of a software

development process. The PQI value is the product of five quality profile component values.

1. Design quality is expressed as the ratio of design time to coding time.

2. Design review quality is the ratio of design review time to design time.

3. Code review quality is the ratio of code review time to coding time.

4. Code quality is the ratio of compile defects to a size measure.

5. Program quality is the ratio of unit test defects to a size measure.

The PQI components are normalized to [0, 1] such that zero represents poor practice and one

represents desired practice. The ratios are plotted on the axes of a pentagon with scale [0, 1]. The

resulting polygon can be compared with the containing pentagon to determine the quality of the

process. Recommended values for each PQI component are as follows.

 Design quality is the minimum of 1.0 or the time spent in detailed design divided by the time

spent in coding.

 Design-review quality is the minimum of 1.0 or 2 times the time spent in detailed design

review divided by the time spent in detailed design).

 Code-review quality is the minimum of 1.0 or 2 times the time spent in code review divided

by the time spent in coding.

 Code quality is the minimum of 1.0 or 20/(10+Defects/KLOC in compile).

 Program quality is the minimum of 1.0 or 10/(5+Defects/KLOC in unit testing).

5.2.14 Calculating values for the PQI components

To calculate and interpret PQI values:

 Multiply the five PQI element measures together to give a number between 0.0 and 1.0.

 Values below 0.5 indicate that the product is likely to be of poor quality. The lower the val-

ue, the poorer the quality is likely to be.

5.2.15 Composite PQI

A composite PQI measure represents the overall process quality for a project that produced mul-

tiple programs. This composite PQI can be calculated in three ways, each of which has advantag-

es and disadvantages.

1. The PQI product measure is calculated by taking the product of all of the PQI for the com-

ponent programs.

a. Advantage: This measure will quickly indicate that a product has components with low

PQI values.

b. Disadvantage: For large systems, the values are likely to be too low to be useful in

managing system quality.

51 | CMU/SEI-2009-SR-018

2. The overall PQI measure is determined by using the overall values for all of the programs

for calculating the quality profile component values. For example, review time would be the

sum of the review times for all the program elements and the unit test defects would be the

total defect density for all of the combined programs.

a. Advantage: This measure has the advantage of being easy to calculate and providing a

general indicator of overall product quality.

b. Disadvantage: A few poor quality components will be masked by the larger number of

high quality components.

3. The minimum PQI measure is calculated by using the PQI value for that program component

that had the minimum PQI value.

a. Advantage: This measure has the advantage of rapidly pinpointing any poor-quality

component.

b. Disadvantage: The measure does not indicate anything about the quality of the overall

program.

Since no single composite measure is best for all purposes, composite PQI measures should be

used with care and their meaning thoroughly explained.

5.2.16 Phase defect removal rate

For each phase of a process, the phase defect removal rate is the number of defects found per hour

in that phase.

5.2.17 Review Rate

Review rate refers to the size of product reviewed per hour. This rate is calculated for both review

and inspection phases (see 5.3.3).

5.2.18 Defect-removal leverage (DLR)

Defect-removal leverage is a measure of the relative effectiveness of defect removal for any two

process phases. For example, the DRL for design review relative to unit test would be defined as

―DRL(DR/UT) = defects per hour in design review divided by defects per hour in unit test.‖

Knowledge Area 5.3: Quality Methods

Personal reviews are an effective and efficient way to improve product quality and individual

productivity. Various review methods are effective in different situations.

5.3.1 Personal reviews

A personal review is conducted by the individual who examines his or her own product with the

goal of finding and fixing as many defects as possible. Personal reviews should precede any other

activity that uses the product (coding, compiling, testing, inspecting, etc.).

5.3.2 Personal review principles

 Find and fix all defects in your work.

52 | CMU/SEI-2009-SR-018

 Use a checklist derived from personal defect data.

 Follow a structured review process.

 Follow sound review practices.

 Measure your reviews.

 Use data to improve your reviews.

 Produce reviewable products.

 Use data to identify where and why defects were injected and then to change the process to

prevent similar defects in the future.

5.3.3 Inspections

An inspection is a structured team review of a component or product. The object of an inspection

is to identify problems in the product. Inspections are conducted according to a defined procedure

with attendees filling established roles. In a properly-run inspection, the participants do not dis-

cuss the problems identified, nor do they attempt to solve those problems.

5.3.4 Walkthroughs

A walkthrough is less formal than an inspection. A product, such as a design or a code segment, is

presented to an audience that raises issues and asks questions.

5.3.5 Relationship between reviews and inspections

A personal review should precede any inspection. A review before inspection assures inspectors

that they are looking for more subtle issues, rather than obvious mistakes.

5.3.6 Conducting effective personal reviews

For effective and efficient reviews, these practices should be followed.

 Take a break between working and reviewing.

 Review products in hard copy form, rather than electronically.

 Check off each item as it is completed.

 Update review checklists periodically to respond to changes in personal data.

 Build and use a different checklist for each design method, programming language, or prod-

uct type.

 Thoroughly analyze and verify every non-trivial design construct (see 6.6).

Knowledge Area 5.4: PSP Code Reviews

Code reviews should follow a defined process and employ checklists constructed from personal

defect data. Consistency in following a review strategy based on experience can make reviews

more efficient and effective.

53 | CMU/SEI-2009-SR-018

5.4.1 Code review checklist

A code review checklist is specific to an individual’s coding process. It lists defect categories that

have caused problems in the past so that these defects are checked for during the review.

5.4.2 PSP code review process

The PSP code review process is as follows.

1. Obtain the code review checklist, coding standard, and defect standard.

2. Print a copy of the code to be reviewed.

3. For each defect category on the checklist, make a complete pass over the code and check off

each item as it is completed.

4. Correct all defects and check each defect fix for correctness.

5.4.3 Code review strategy

A review strategy should be based on data that show the strategy to be effective. An initial strate-

gy is to examine lower-level modules first so that procedural abstractions are reviewed and un-

derstood before higher-level ones. After a strategy has been determined to be effective, it should

be followed consistently. Depending on the type of product and the individual’s knowledge of its

design, different review strategies may be appropriate.

5.4.4 Review against a coding standard

Code reviews should check for compliance with coding standards. Applicable coding standards

should be referenced in the code review checklist.

Knowledge Area 5.5: PSP Design Reviews

Design reviews should follow a design review process, including appropriate design analyses,

based on checklists that are built on sound design principles. Consistency in following a review

strategy based on measured experience can make reviews more efficient and effective.

5.5.1 Design review principles

 Produce designs that can be reviewed.

 Follow an explicit review strategy.

 Review the design in stages.

 Verify that logic correctly implements the requirements.

 Check for safety and security issues.

5.5.2 Design review checklist

A design review checklist is specific to an individual’s design process. It is based on personal

defect data and lists defect categories that have caused problems in the past so that these defects

are checked for during the review.

54 | CMU/SEI-2009-SR-018

5.5.3 PSP design reviews

The PSP design review process is as follows.

1. Obtain the design review checklist and design and defect standards.

2. Print a copy of the design to be reviewed, if appropriate.

3. For each defect category on the checklist, make a complete pass over the design and check

off each item as it is completed.

4. Correct all defects and check each defect fix for correctness.

5. Analyze all complex design constructs to verify their correctness (see 6.6).

5.5.4 Design review strategy

A review strategy should be based on data that show the strategy to be effective. After a strategy

has been determined to be effective, it should be followed consistently.

Knowledge Area 5.6: Review Issues

Reviews can be very effective if they are conducted using guidelines that are based on extensive

and quantified experience.

5.6.1 Review efficiency

Design and code reviews find defects directly, helping the reviewer to gain a mental picture of the

intended behavior of the program. In large system-development processes, design and code re-

views are especially important because effective scale-up of PSP methods requires that all incre-

ments be of high quality. To ensure that large-scale systems achieve the same high quality as

smaller systems, the PSP scripts should be followed, and each module and/or increment should be

subjected to design reviews, code reviews, and regression testing to ensure that new increments

do not cause problems with previously-tested and accepted functioning modules.

5.6.2 Reviewing before or after compiling

Many development environments use automatic code analyzers and/or compilers that are quite

helpful; their use is not discouraged. However, to be the most effective, the review should be per-

formed before using the code analyzer or compiler. Code reviews should be performed prior to

testing.

5.6.3 Review objectives

Properly conducted code reviews significantly reduce testing time and produce high-quality re-

sults. Unless the individual is committed to producing high-quality products, the review process

is likely to be ineffective. Individuals whose objective is to begin testing as soon as possible rare-

ly perform code reviews or perform them so poorly that they are a waste of time.

55 | CMU/SEI-2009-SR-018

Competency Area 6: Software Design

The Software Design competency area describes the ability to incorporate design and design veri-

fication activities into a personal software development process. The major knowledge areas

composing this competency area are as follows:

6.1 Software Design Principles – This knowledge area describes software design principles as

incorporated in the PSP.

6.2 Design Strategies – This knowledge area addresses the design strategies used in the PSP.

6.3 Design Quality – This knowledge area describes the key characteristics that can be used to

assess the quality of a software design.

6.4 Design Documentation – Software designs must be documented, along with the related

requirements, constraints, and rationale. This knowledge area discusses the design documentation

that is the responsibility of the individual.

6.5 Design Templates – The PSP does not specify design techniques, but does provide a set of

templates as a frame for design documentation. The templates help to ensure that a system and its

modules are completely and precisely implemented.

6.6 Design Verification – To be effective, design reviews must go beyond simply reading

through a design document. The PSP provides a number of design verification techniques that

can be used to identify errors and omissions in software designs.

References: The subject matter covered in this competency is detailed in the following works:

[Humphrey 95, Chapters 10, 12]

[Humphrey 05a, Chapters 10-12]

Knowledge Area 6.1: Software Design Principles

This knowledge area describes software design principles as incorporated in the PSP.

6.1.1 Definition of software design

A software design transforms an ill-defined requirement into an implementable product specifica-

tion.

6.1.2 The design process

The design process is the set of steps used within a design methodology to create a design. The

design process should result in an overall view of the requirement solution, which is unobscured

by low-level implementation details. It does not construct the solution but explores the potential

solution space and makes decisions about the structure and behavior of the intended product.

56 | CMU/SEI-2009-SR-018

6.1.3 The role of design in the overall software development process

Software design links the requirements for a system to its implementation. By appropriate use of

abstraction, it manages complexity and ensures that the system components work together to pro-

duce the desired results.

6.1.4 The “requirements uncertainty principle”

Because a new system affects the users and changes their needs, the requirements for a software

system are often not completely known until after the completed product is put to use. The design

process must provide a stable basis for this ongoing evolution.

6.1.5 The role of design in PSP

Well-designed components are critical to the success of the larger systems that utilize them. Indi-

viduals must employ design practices that can meet the demands of complex and dynamically

evolving systems.

6.1.6 Design methodology in PSP

The PSP does not prescribe the use of any specific design methodology, but does it does define

the requirements for design documentation.

6.1.7 Design specification structure

The elements of a complete design can be specified using the following specification structure.

 external-static (inheritance, class structure)

 external-dynamic (services, messages)

 internal-static (attributes, program structure, logic)

 internal-dynamic (state machine)

6.1.8 Need for design precision

A design specification should be precise. The lack of a precise design is the source of many im-

plementation errors. For best design precision, specify and document design decisions before be-

ginning the coding step of the process.

Knowledge Area 6.2: Design Strategies

This knowledge area addresses the design strategies used in the PSP.

6.2.1 The need for design strategies

Design is a complex intellectual process that cannot be automated, reduced to a routine procedure,

or precisely controlled or predicted; however, some guidelines and strategies can be helpful in

separating routine and creative activities, in ensuring that the design work is performed properly,

and in identifying effective design tools and methods.

57 | CMU/SEI-2009-SR-018

6.2.2 Nature of the design process

Design is a learning process that commonly requires moving between design levels and from one

part of the system to another.

6.2.3 Design process guidelines

 Where practical, complete higher-level designs first.

 Record all assumptions, outstanding issues, questions, and problems.

 Where appropriate, use prototyping or experimentation to reduce uncertainty before design-

ing.

 Do not consider a design complete until the designs for all interdependent components are

also completed.

 Document all designs (see 6.6).

6.2.4 Types of design strategies

Design strategies may include the following:

 progressive

 functional enhancement

 fast-path

 dummy

Knowledge Area 6.3: Design Quality

This knowledge area describes the key characteristics that can be used to assess the quality of a

software design.

6.3.1 Design precision

Designs should be concise and unambiguous. The design should contain sufficient detail for all

intended uses of the design documentation.

6.3.2 Design completeness

 All relevant details should be included, without any unnecessary redundancy.

 The design documentation should not be limited to individual component designs, but should

also document system-wide or emergent concerns.

 It is helpful to include the rationale for design decisions; it is often helpful to document al-

ternatives that were not chosen.

6.3.3 Design usability

The design must be accessible to and understandable by all its users.

58 | CMU/SEI-2009-SR-018

Knowledge Area 6.4: Design Documentation

Software designs must be documented, along with the related requirements, constraints, and ratio-

nale. This knowledge area discusses the design documentation that is the responsibility of the

individual.

6.4.1 The need for software design documentation

Software designs must be documented, along with the related requirements, constraints, and ratio-

nale, because designs for all but the simplest programs are needed by people who will be involved

with the eventual products. Examples include the following.

 The individual: to facilitate program implementation, verification, and test

 Team members: to enable design inspections and design coordination

 Testers: to enable test planning

 Maintainers: to facilitate product enhancement and repair

 Documenters and users: to enable others to understand what the product does and how it

works

6.4.2 Overall design documentation concerns

To ensure that the design documentation continues to represent the product, the design documen-

tation must be self-consistent, and changes must be managed and properly documented.

6.4.3 Common types of design documentation

The individual produces design documentation covering

 program context

 program structure

 related components

 external variables, calls, references

 detailed program logic description for design decisions; it is often helpful to document alter-

natives that were not chosen

6.4.4 Design visibility

The design documentation provides the visible representation of a design used for review and ve-

rification. The design is recorded using an appropriate design notation (see 6.5.1).

6.4.5 Design documentation practice

A useful practice when implementing a design is to start with the full program’s design and, as

each design section is implemented, encapsulate that design segment in a comment immediately

before the implementation.

59 | CMU/SEI-2009-SR-018

Knowledge Area 6.5: Design Templates

The PSP does not specify design techniques, but does provide a set of templates as a frame for

design documentation. The templates help to ensure that a system and its modules are completely

and precisely implemented. The templates are useful in guiding the individuals in producing sim-

ple, precise, and complete design documentation.

6.5.1 Design notation

A notation based on mathematical logic can assist in producing concise and unambiguous design

documentation. Examples are pseudocode and Zed. The following criteria should be followed

when selecting an appropriate design notation.

 The design notation should be capable of precisely and completely representing the de-

sign.

 It must be understandable and usable to the people who will use and/or implement the

design.

 It should help the designer to produce a high-quality design.

 It should be compatible with the implementation language that will be used.

 It should allow variable degrees of implementation dependence.

6.5.2 PSP design templates

The PSP design templates represent the static structure and the dynamic behavior of a software

system, capturing both the externally visible characteristics and the internal details (see 6.1.6). A

complete PSP design should contain the following four categories of design elements.

 external-dynamic: Use the operational specification template (OST) and the functional speci-

fication template (FST) to record this information (see

 6.5.3 and 6.5.4).

 external-static: Use the functional specification template (FST) to record this information

(see 6.5.4).

 internal-dynamic: Use the state specification template (SST) to record this information (see

6.5.5).

 internal-static: Use the logic specification template (LST) to record this information (see

6.5.6).

6.5.3 Operational specification template (OST)

The OST documents the external-dynamic characteristics of a part of a software system. It de-

scribes one or more scenarios involving the part and the actors (e.g., users or other systems) that

interact with it. Each OST has a unique ID, a user objective, and a scenario objective. For each

step in a scenario, the OST lists

 source (system or specified actor)

 step number

60 | CMU/SEI-2009-SR-018

 action

 comments

6.5.4 Functional specification template (FST)

The FST documents a part (e.g., a class) of a software system, its external-static relationships, and

its externally visible attributes. The FST also documents the external-dynamic characteristics of a

part. It describes actions (e.g., class methods) that the part makes available for external use; this

description includes the defined interface for each action, including arguments, constraints, and

returned results.

6.5.5 State specification template (SST)

The SST documents the internal-dynamic behavior of a software system and its parts (e.g.,

classes) when that behavior is represented as a set of states, transitions between states, and actions

associated with the transitions. The SST can be supplemented by a separate state diagram that

graphically depicts the states, transition conditions, and actions. An SST contains

 state names and descriptions

 functions and internal parameters used in transition conditions

 details of state transitions

 current state

 next state

 transition condition (predicate)

 action performed when transition occurs

6.5.6 Logic specification template (LST)

The LST documents the internal-static characteristics of a part of a software system. It describes

the internal logic of the part, using pseudocode to clearly and concisely explain its operation.

Note that the LST information may be embedded as comments in the program source code, rather

than using a separate form, as long as it is clear and sufficiently detailed.

6.5.7 Template usage

The PSP design templates may be

 used to document a design produced using various design techniques

 used to document the design of an existing software system, to support redesign or verifica-

tion

 supplemented or partially replaced by other design documentation techniques (e.g., the Uni-

fied Modeling Language), as long as equivalent design information is captured in an easily

usable form

 applied at different levels of the design hierarchy

61 | CMU/SEI-2009-SR-018

Knowledge Area 6.6: Design Verification

To be effective, design reviews must go beyond simply reading through a design document. The

PSP provides a number of design verification techniques that can be used to identify errors and

omissions in software designs.

6.6.1 Design standards

Software designs can be verified against standards, which promote consistency and quality. These

standards may include

 product conventions

 product design standards

 reuse standards

6.6.2 Verification methods

Software verification methods include

 execution table verification

 trace-table verification

 state-machine verification

 loop verification

 other analytical verification methods

6.6.3 Choosing the appropriate design verification method

 Analyze your personal defect data to determine which design aspects are most defect-prone.

It is not a prudent use of time to verify design aspects where you make few (if any) defects.

 Evaluate the effectiveness of current verification methods. Identify a family of effective

techniques and use them, even on small programs.

 Consider the economics of current verification techniques. Choose the verification methods

that are most effective personally and that best apply to the conditions of the design.

6.6.4 Using execution table verification

 Identify loops and complex routines for verification.

 Choose order of analysis (e.g., top down or bottom up).

 Construct an execution table with program steps and relevant variable values, using multiple

copies for loop iterations

 Verify execution results against the requirements specification.

6.6.5 Using trace-table verification

 Identify representative logical cases for analysis.

 For each logical case, verify using an execution table.

62 | CMU/SEI-2009-SR-018

6.6.6 Execution table verification vs. trace-table verification

Differentiate between execution table and trace-table verification and know when to use each one.

6.6.7 Using state-machine verification

 Check the state-machine structure to ensure it has no hidden traps or loops, using a state dia-

gram if practical.

 Examine each state and verify that the set of transitions from that state is complete (defined

for all possible transition condition values).

 Examine each state and verify that the associated state transitions are orthogonal (only one

transition defined for each set of transition condition values).

6.6.8 Using loop verification

Verify loop initiation, incrementing, and termination, using the verification methods appropriate

to the type of loop.

 for-loop verification

 while-loop verification

 repeat-until verification

63 | CMU/SEI-2009-SR-018

Competency Area 7: Process Extensions and Customization

The Process Extensions and Customization competency area describes the modifications to the

PSP that are required when scaling up from smaller programs to larger ones, when working with

unfamiliar situations or environments, or when moving to team-based development instead of

working alone. The major knowledge areas composing this competency area are as follows:

7.1 Defining a Customized Personal Process – A defined process should not be regarded as

―one size fits all.‖ This knowledge area addresses situations in which processes must be tailored

to meet changes in needed outputs or developed from the ground up to address new situations or

environments.

7.2 Process Evolution – A process cannot be evolved to fit changing needs or situations until

the current process accurately represents what is actually done when using that process. This

knowledge area addresses the activities involved with incrementally evolving an initial process

into one that is an accurate and complete description of the actual process.

7.3 Professional Responsibility – Exceptional work requires responsible behavior on the part

of a professional. This knowledge area describes some of the practices of responsible profession-

als.

References: The subject matter covered in this competency is detailed in the following works:

[Horn 90]

[Humphrey 95, pp. 483-485, 725-740]

[Humphrey 05a, Chapter 13]

Knowledge Area 7.1: Defining a Customized Personal Process

A defined process should not be regarded as ―one size fits all.‖ This knowledge area addresses

situations in which processes must be tailored to meet changes in needed outputs or developed

from the ground up to address new situations or environments.

7.1.1 When to define a new or customized process

Different situations call for different methods: what works well in one environment may not be

effective in another. For example, simple programming tasks may require little or no design time.

However, larger systems or high-security systems (regardless of size), require a thorough design.

A process without a design phase may require customization to include this activity when tailor-

ing an existing process to fit a new situation, when the process scalability changes, or when secu-

rity requirements change.

64 | CMU/SEI-2009-SR-018

7.1.2 How to define a new or customized process

Defining a new or customized personal process follows the same principles as those for software

development: start with user needs, and end with final test and release. There are eight general

steps for tailoring or creating a personal process.

1. Determine your needs and priorities.

2. Define process objectives, goals, and quality criteria.

3. Characterize your current process.

4. Characterize your target process.

5. Establish a process development strategy.

6. Define your initial process.

7. Validate your initial process.

8. Enhance your process.

7.1.3 Using information mapping for documenting a new or customized process

When tailoring an existing process (or developing scripts and forms from scratch), follow the fol-

lowing principles of information mapping [Horn 90].

 Chunking: Organize information into groups that are manageable to read and/or to accom-

plish.

 Relevance: Group ―like things‖ together and exclude unrelated items from each chunk.

 Labeling: Provide the user with a label for each chunk of information.

 Consistency: Use consistent terms within each chunk of information, between the chunk and

the label, in organizing the information, and in formatting the document or instrument in

which the information is recorded.

 Integrate graphics: Use tables, illustrations, and diagrams as an integral part of writing.

 Accessible detail: Write at the level of detail that makes the document usable for all readers.

 Hierarchy of chunking and labeling: Group small chunks around a single relevant topic and

provide each group with a label.

Knowledge Area 7.2: Process Evolution

A process cannot be evolved to fit changing needs or situations until the current process accurate-

ly represents what is actually done when using that process. This knowledge area addresses the

activities involved with incrementally evolving an initial process into one that is an accurate and

complete description of the actual process.

7.2.1 Initial process definition

Initial process descriptions are seldom accurate, due to a phenomenon analogous to the Heisen-

berg Uncertainty Principle: the act of defining a process changes that process. The initial de-

scription of the process usually contains omissions, idealizations, and other inaccuracies. The

65 | CMU/SEI-2009-SR-018

process of accurately describing what really happens often affects the process during the very act

of defining it.

7.2.2 Refining a personal process

1. Start with a characterization of the process as currently used.

2. Define the target or ideal process.

3. Define the steps needed to move from the current process to the target process.

4. Develop the necessary scripts, forms, standards, and measures to use in the process.

5. Review the process as it is being implemented and correct any identified errors or omissions.

Knowledge Area 7.3: Professional Responsibility

Exceptional work requires responsible behavior on the part of a professional. This knowledge

area describes some of the practices of responsible professionals.

7.3.1 Use effective methods in your work

Good practices are straightforward, but few people consistently use them. The dedicated profes-

sional finds effective methods for consistently producing high-quality work and then uses those

methods.

7.3.2 Use data to discover your strengths and weaknesses

Use the postmortem analysis of your personal data to build an understanding of what you do well

and areas where you need to improve. Focus on making small improvements regularly, and major

changes will take care of themselves.

7.3.3 Practice

The key to improving your work is to practice your skills on the job to the maximum extent poss-

ible.

7.3.4 Learn from others, and pass on what you know

Talk to your colleagues and review the literature to learn about new techniques and to learn from

the mistakes of others. As you learn and build your own knowledge, share what you have learned

with others. Take advantage of what you find and contribute what you learn.

7.3.5 Find and learn new methods

Watch for innovations that are pertinent to your personal needs. Allocate time in your schedule

for skill building whenever possible. By keeping up to date, you make yourself more attractive to

your current employer (and to future employers) as a desirable and competent professional.

66 | CMU/SEI-2009-SR-018

67 | CMU/SEI-2009-SR-018

Conclusion

The PSP BOK is a three-tiered hierarchical model delineating the competencies, knowledge areas,

and key concepts and skills that compose the essential proficiencies to be mastered by a PSP-

trained professional. As PSP adoption continues to grow, it is expected that the PSP BOK will

evolve to reflect further process extensions and a deeper understanding of the application of the

key concepts and skills in actual on-the-job practice.

68 | CMU/SEI-2009-SR-018

69 | CMU/SEI-2009-SR-018

Appendix Key Statistical Formulae and Procedures

PSP emphasizes use of statistical methods in implementing and improving personal software en-

gineering processes. Many of the specific formulae and statistical procedures listed below are

embodied within PSP support tools. The specific statistical formulae and procedures are included

in this body of knowledge because they are important concepts and skills for PSP instructors and

tool developers. Another reason for including the formulae is that many PSP courses and/or cur-

ricula include a requirement for learners to develop programs to implement these statistical for-

mulae and procedures. This provides the students with data to help them understand and improve

their personal processes, and gives them a deeper understanding of the mechanics behind the PSP

methods and procedures. PSP practitioners are not expected to be able to recall the information in

this section, but they are expected to be able to use these methods appropriately.

Numerical data for the PSP are assumed to be generated by some common process, so they can be

considered to come from a distribution. Thus, statistical formulae can enable inference about the

underlying distribution and the process that generated it. Therefore, the user is dealing with esti-

mates of the distribution parameters. Although not stated for each formula, the statistics are esti-

mates of the various statistical parameters, not their actual values.

Key Statistical Formula and Procedure Description and Formula

A.1 Calculate the mean, , of a dataset

nxx ,...,1

n

i
i

x
n

xavg

1

1

A.2 Calculate the variance, 2 , about the

mean for the dataset in A.1

n

i
ix

n 1

22)(
1

1

A.3 Calculate the standard deviation, ,

for the variance in A.2

A.4 Transform a dataset nxx ,...,1 with mean

 and standard deviation into standard

normal form, i.e., mean = 0 and standard

deviation = 1.

i

i

x
z

70 | CMU/SEI-2009-SR-018

Key Statistical Formula and Procedure Description and Formula

A.5 Calculate the correlation between data

pairs (x1, y1), … , (xn, yn)
2

11

2
2

11

2

1 11
,

n

i
i

n

i
i

n

i
i

n

i
i

n

i

n

i
ii

n

i
ii

yx

yynxxn

yxyxn

r

A value of r
2
 greater than or equal to 0.5 implies a high

positive linear relationship. Although r
2
 may approach 1,

the relationship may not be significant (see A.8).

A.6 The gamma function)1()1()(xxx , where

For integer values of x,)!1()(xx

Also,

1)1(

)2/1(

A.7 The t-distribution (probability density

function) for degrees of freedom df 2

1
2

1

2
*

2

1

)(

df

df

x

df
df

df

xF

71 | CMU/SEI-2009-SR-018

Key Statistical Formula and Procedure Description and Formula

A.8 Calculate the significance of the cor-

relation in A.5
1. Calculate

2,

1
2

,

,
ndf

r

dfr
t

yx

yx

2. Calculate the significance, p, of the value of t in step

1 by computing its probability. Begin by integrating

the t distribution function in A.7 from -t to t for df =

n 2.

t

t

dxxFP)(

3. Calculate the area under the two tails of the t func-

tion. Let P be the area under the t-distribution from -

t to t. The ―p-value‖ is area under the tails of the t-

distribution, that is the sum of the integrals from -∞

to -t and t to ∞. Because the total probability (area

from -∞ to ∞) is 1.0, the area under the two tails is p

=1.0 – P.

4. The correlation in A.5 is significant if p < 0.05

A.9 Calculate linear regression estimating

parameters for data pairs (x1, y1), … , (xn,

yn)

Calculate the linear regression estimating parameters 0

and
1
.

2

1

2

1
1

avg

n

i
i

avgavg

n

i
ii

nxx

ynxyx

avgavg xy 10

A.10 Use linear regression to calculate an

estimated value for y given an estimated

value of x and estimating parameters from

A.9

y = β0 + β1x

72 | CMU/SEI-2009-SR-018

Key Statistical Formula and Procedure Description and Formula

A.11 Calculate multiple regression esti-

mating parameters 0 ,
1
, …, n for data

set (x11, …, xm1, y1), (x12, …, xm2, y2), …,

(x1n, …, xmn, yn)

Calculate the multiple-regression estimating parameters

0 ,
1
, … , n . Find the beta parameters by solving the

following simultaneous linear equations.

n

i
imi

n

i
mim

n

i
mmi

n

i
mmi

n

i
mi

n

i
ii

n

i
miim

n

i
i

n

i
ii

n

i
i

n

i
ii

n

i
miim

n

i
ii

n

i
i

n

i
i

n

i
i

n

i
mim

n

i
i

n

i
i

yxxxxxxx

yxxxxxxx

yxxxxxxx

yxxxn

11

2

1
22

1
11

1
0

1
2

1
2

1

2
22

1
121

1
20

1
1

1
1

1
212

1

2
11

1
10

111
22

1
110

...

...

...

...

...

A.12 Use multiple regression to calculate

an estimated value for y given an estimated

value of (x1, …, xm) and estimating para-

meters β0, …, βm from A.11

y = β0 + β1x1 + … + βmxm

A.13 Calculate the standard normal func-

tion.
2

2

)2(

1
)(

x

exF

A.14 Calculate the chi-square function for

df degrees of freedom
2

1
2

2

2
2

1
)(

xdf

df
ex

df
xF

A.15 Approximate the integral of a func-

tion F(x) from a to b using Simpson’s Rule
bFiWFiWFaF

W
dxxF

N

i

N

i

b
a

2

...6,4,2

1

...5,3,1

24
3

)(

where

N is the number of segments (an even number)

W = N

ab

73 | CMU/SEI-2009-SR-018

Key Statistical Formula and Procedure Description and Formula

A.16 Calculate the range around the new

estimate
_

x for the 70% prediction interval

for linear regression applied to the data

pairs (x1, y1), …, (xn, yn).

n

i

avgi

avg

xx

xx

n
dftRange

1

2

2
_

1
1,70.0

where

1. t is the limit of the integration of the t-distribution

for df = n-2 (see A.7) such that

.70.0)(

t

t

dxxF

2.

n

i
ii xy

df 1

2
10

2 1

is the variance of yi from the regression line for the data.

A.17 Calculate the range around the new

estimate (),...,
_

1

_

mxx for the 70% predic-

tion interval for multiple regression applied

to the data set (x11, …, xm1, y1), (x12, …,

xm2, y2),…, (x1n, …, xmn, yn)

n

i

avgmmi

avgmm

n

i

avgi

avg

xx

xx

xx

xx

n
dftRange

1

2

,

2

,

_

1

2

,11

2

,11

_

...
1

1,70.0

where

1.

n

i
kiavgk x

n
x

1
,

1

, k = 1, …, m

2. t is the limit of the integration of the t –distribution

function for df = n-m-1 (see A.7) such that

.70.0)(

t

t

dxxF

3.

n

i

mimii xxy
df 1

2

110

2 ...
1

is the variance of yi from the regression line for the data.

74 | CMU/SEI-2009-SR-018

Key Statistical Formula and Procedure Description and Formula

A.18 Use the chi-square test for normality

of n data points

1. Convert data to standard normal form.

2. Divide the normal distribution into some number of

segments S, such that

 each segment has probability 1/S

 n/S 5 (an integer if possible)

 S > 3

 S
2
 n

 when more than one value of S is possible, se-

lect the one such that n and S
2
 are most nearly

equal

3. Determine how many items of the ideal normal dis-

tribution would fall into each segment. This number

is Ni. (If n/S is an integer, then Ni = n/S).

4. Using the same segment boundaries, determine how

many items from the normalized data set fall into

each segment. This number is ki.

5. Calculate the Q value for the segments.

S

i i

ii

N

kN
Q

1

2

6. Calculate the probability p of the
2
 distribution for

S-1 degrees of freedom (df) by integrating the chi-

square function (see A.14) from 0 to Q.

7. Calculate the distribution tail as 1-p.

8. Tail areas greater than 0.2 are generally considered

sufficient to accept a fit; tail areas less than 0.05 are

generally considered sufficient to reject a fit; inter-

mediate values indicate intermediate degrees of fit.

75 | CMU/SEI-2009-SR-018

Bibliography

URLs are valid as of the publication date of this document.

[Davis 03] Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP)

in Practice: A Summary of Recent Results (CMU/SEI-2003-TR-014,

ADA418430). Pittsburgh, PA: Software Engineering Institute, Carne-

gie Mellon University, 2003.

http://www.sei.cmu.edu/publications/documents/03.reports

/03tr014.html

[Feiler 92] Feiler, Peter H. & Humphrey, Watts S. Software Process Develop-

ment and Enactment: Concepts and Definitions (CMU/SEI-92-04).

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, 1992.

http://www.sei.cmu.edu/publications/documents/92.reports

/92.tr.004.html

[Ford 96] Ford, Gary & Gibbs, Norman E. A Mature Profession of Software

Engineering (CMU/SEI-96-TR-004, ADA307889). Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1996.

http://www.sei.cmu.edu/publications/documents/96.reports

/96.tr.004.html

[Hayes 97] Hayes, Will & Over, James. The Personal Software Process: An

Empirical Study of the Impacts of PSP on Individual Engineers

(CMU/SEI-97-TR-001, ADA335543). Pittsburgh, PA: Software En-

gineering Institute, Carnegie Mellon University, 1997.

http://www.sei.cmu.edu/publications/documents/97.reports/97tr001

/97tr001abstract.html

[Hilburn 99] Hilburn, Thomas B.; Hirmanpour, Iraj; Khajenoori, Soheil; Turner,

Richard; & Qasem, Abir. A Software Engineering Body of Know-

ledge Version 1.0 (CMU/SEI-99-TR-004, ADA363793). Pittsburgh,

PA: Software Engineering Institute, Carnegie Mellon University,

1999.

http://www.sei.cmu.edu/publications/documents/99.reports/99tr004

/99tr004abstract.html

[Horn 90] Horn, Robert E. Developing Procedures, Policies, and Documenta-

tion. Waltham, MA: Information Mapping, Inc., 1990.

76 | CMU/SEI-2009-SR-018

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading, MA:

Addison-Wesley, 1989.

[Humphrey 95] Humphrey, Watts S. A Discipline for Software Engineering. Read-

ing, MA: Addison-Wesley, 1995.

[Humphrey 97] Humphrey, Watts S. Introduction to the Personal Process. Reading,

MA: Addison-Wesley, 1997.

[Humphrey 00] Humphrey, Watts S. The Personal Software Process (PSP)

(CMU/SEI-2000-TR-022, ADA387268). Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University, 2000.

http://www.sei.cmu.edu/publications/documents/00.reports

/00tr022.html

[Humphrey 05a] Humphrey, Watts S. PSP: A Self-Improvement Process for Software

Engineers. Reading, MA: Addison-Wesley, 2005.

[Humphrey 05b] Humphrey, Watts S. PSP: A Self-Improvement Process for Software

Engineers Instructor’s Guide. Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, 2005.

[Humphrey 06] Humphrey, Watts S. TSP: Leading a Development Team. Upper Sad-

dle River, NJ: Pearson Education, Inc., 2006.

[IEEE 04] IEEE Computer Society. Guide to the Software Engineering Body of

Knowledge (SWEBOK) 2004 Version.

http://www.swebok.org/home.html (2004).

[Naur 69] Naur, Peter & Randell, Brian, eds. Software Engineering: Report of a

Conference Sponsored by the NATO Science Committee. Garmisch,

Germany, Oct. 7-11, 1968. Brussels, Belgium: Scientific Affairs Di-

vision, NATO, 1969.

[PMI 08] Project Management Institute. A Guide to the Project Management

Body of Knowledge (PMBOK
®
 Guide), Fourth Edition. Newton

Square, PA: PMI Publishing Division, 2008.

77 | CMU/SEI-2009-SR-018

[Webb 99] Webb, David & Humphrey, Watts S. ―Using the TSP on the TaskView

Project.‖ CrossTalk 12, 2 (February 1999): 3-10.

 [Wikipedia 05] Wikipedia, The Free Encyclopedia. Criticism of software engineer-

ing. http://en.wikipedia.org/wiki

/Criticism_of_software_engineering (2005).

http://www.stsc.hill.af.mil/crosstalk/1999/02/webb.asp
http://www.stsc.hill.af.mil/crosstalk/1999/02/webb.asp

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2009

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

The Personal Software ProcessSM (PSPSM) Body of Knowledge, Version 2.0

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Marsha Pomeroy-Huff, Robert Cannon, Timothy A. Chick, Julia Mullaney, & William Nichols

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2009-SR-018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

As the profession of software engineering evolves and matures, it must achieve some of the critical elements

needed for recognition as a bona fide discipline. Among these elements are the establishment of a recog-

nized body of knowledge (BOK) and certification of professional practitioners.

The body of knowledge contained in this report is designed to complement the IEEE Computer Society’s

Software Engineering Body of Knowledge (SWEBOK) by delineating the skills and concepts that compose

the knowledge areas and competencies of a proven-effective process improvement method, the Personal

Software Process (PSP). As adoption of the PSP methodology continues to grow, it becomes crucial to doc-

ument the fundamental knowledge and skills that set PSP practitioners apart from other software profession-

als. The PSP BOK serves this purpose and more. It helps individual practitioners to assess and improve

their own skills; provides employers with an objective baseline for assessing the personal process skills and

capabilities of their product development team members; and guides academic institutions that want to incor-

porate PSP into their software and other engineering courses or curricula. The PSP BOK also facilitates the

development of PSP certification programs that are based on a well-established, standard set of knowledge

and skills.

14. SUBJECT TERMS

Body of knowledge, BOK, SWEBOK, software engineering body of knowledge, personal soft-

ware process, PSP

15. NUMBER OF PAGES

92

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	The Personal Software Process (PSP) Body of Knowledge, Version 2.0
	Table of Contents
	List of Figures
	List of Figures
	About This Report
	Acknowledgments
	Foreword
	Abstract
	1 Introduction
	2 Suggested Uses of the PSP BOK
	3 PSP BOK Structure and Terminology
	4 The PSP Body of Knowledge
	Competency Area 1: Foundational Knowledge
	Competency Area 2: Basic PSP Concepts
	Competency Area 3: Size Measuring and Estimating
	Competency Area 4: Making and Tracking Project Plans
	Competency Area 5: Planning and Tracking Software Quality
	Competency Area 6: Software Design
	Competency Area 7: Process Extensions and Customization
	Conclusion
	Appendix Key Statistical Formulae and Procedures
	Bibliography

